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CHAPTER 1

P3DFFT Home Page

1.1 Open Source Numerical Library for Scalable Multidimensional
Fourier Transforms and related algorithms

This site provides tools for solution of numerical problems in multiscale phenomena in three dimensions (3D). The
most common example of such problem is Fast Fourier Transform (FFT), which is an important algorithm for simula-
tions in a wide range of fields, including studies of turbulence, climatology, astrophysics and material science. Other
algorithms of importance include Chebyshev transforms and high-order finite difference compact schemes.

Parallel Three-Dimensional Fast Fourier Transforms, dubbed P3DFFT, as well as its extension P3DFFT++, is a library
for large-scale computer simulations on parallel platforms.This project was initiated at San Diego Supercomputer
Center (SDSC) at UC San Diego by its main author Dmitry Pekurovsky, Ph.D.

This library uses 2D, or pencil, decomposition. This overcomes an important limitation to scalability inherent in FFT
libraries implementing 1D (or slab) decomposition: the number of processors/tasks used to run this problem in parallel
can be as large as N^2, where N is the linear problem size. This approach has shown good scalability up to 524,288
cores.

P3DFFT

P3DFFT is written in Fortran90 and is optimized for parallel performance. It uses Message Passing Interface (MPI)
for interprocessor communication, and starting from v.2.7.5 there is a multithreading option for hybrid MPI/OpenMP
implementation. C/C++ interface is available, as are detailed documentation and examples in both Fortran and C.
A configure script is supplied for ease of installation. This package depends on a serial FFT library such as Fastest
Fourier Transform in the West (FFTW) or IBM’s ESSL. The library is available from its github page.

P3DFFT++

P3DFFT++ is the next generation of P3DFFT (versions starting with 3.0). It extends the interface of P3DFFT to allow
a wider range of use scenarios. It provides the user with a choice in defining their own data layout formats beyond the
predefined 2D pencil blocks. It is written in C++ with C and Fortran interfaces, and currently uses MPI. The library
can be found at P3DFFT++ github space. See P3DFFT++ Tutorial and P3DFFT++ reference pages in C++, C and
Fortran.

The following table compares P3DFFT family 2.7.6 and 3.1.0 (P3DFFT++).
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Feature P3DFFT 2.x P3DFFT++
real-to-complex and complex-to-real FFT Yes Yes
complex FFT No Yes
sine and cosine transforms In 1 dimension Yes
pruned transforms Yes No
In-place and out-of-place Yes Yes
Multiple grids No Yes
Hybrid MPI/OpenMP Yes No

License of use

This software is provided for free for educational and not-for-profit use under a UCSD license. License terms can be
seen here. Users are requested to complete optional registration when downloading this software, and also acknowl-
edge the use as below.

Citation information

Please acknowledge/cite use of P3DFFT as follows: D. Pekurovsky, P3DFFT: a framework for parallel computations
of Fourier transforms in three dimensions, SIAM Journal on Scientific Computing 2012, Vol. 34, No. 4, pp. C192-
C209. This paper can be obtained here.

To cite the software you can also use DOI for P3DFFT v. 2.7.9:

Fig. 1: This project is supported by National Science Foundation grant OAC-1835885.
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CHAPTER 2

Installing P3DFFT

The latest version of P3DFFT can be found here. Once you have extracted the package, you must take the following
steps to complete the setup:

1. Run the configure script

2. Run make

3. Run make install

2.1 How to compile P3DFFT

P3DFFT uses a configure script to create Makefile for compiling the library as well as several examples. This
page will step you through the process of running the configure script properly.

Run configure --help for complete list of options. Recommended options: --enable-stride1. For Cray
XT platforms also recommended --enable-useeven.

Currently the package supports four compiler suites: PGI, Intel, IBM and GNU. Some examples of compiling on
several systems are given below. Users may need to customize as needed. If you wish to share more examples or to
request or contribute in support for other compilers, please write to dmitry@sdsc.edu. If you give us an account on
your system we will work with you to customize the installation.
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Argument Notes Description Exam-
ple

--prefix=PREFIX Mandatory for
users with-
out access to
/usr/local

This argument will install P3DFFT to PREFIX when
you run make install. By default, configure will
install to /usr/local.

--prefix=$HOME/
local/

--enable-gnu,
--enable-ibm,
--enable-intel,
--enable-pgi,
--enable-cray

Mandatory These arguments will prepare P3DFFT to be built by a
specific compiler. You must only choose one option.

--enable-pgi

--enable-fftw,
--enable-essl

Mandatory These arguments will prepare P3DFFT to be used with
either the FFTW or ESSL library. You must only choose
one option.

--enable-fftw

--with-fftw=FFTWLOCATIONMandatory if
--enable-fftw
is used

This argument specifies the path location for the FFTW
library; it is mandatory if you are planning to use
P3DFFT with the FFTW library.

--with-fftw=$FFTW_HOME

--enable-openmp Mandatory
if using mul-
tithreaded
version

This argument adds the appropriate compiler flags to en-
able OpenMP.

--enable-openmp

--enable-openmpi Optional This argument uses the OpenMPI implementation of
MPI.

--enable-openmpi

--enable-oned Optional This argument is for 1D decomposition. The default is
2D decomposition but can be made to 1D by setting up
a grid 1xN when running the code.

--enable-oned

--enable-estimate Optional,
use only with
--enable-fftw

If this argument is passed, the FFTW library will not use
run-time tuning to select the fastest algorithm for com-
puting FFTs.

--enable-estimate

--enable-measure Optional,
enabled by
default, use
only with
--enable-fftw

For search-once-for-the-fast algorithm (takes more time
on p3dfft_setup()).

--enable-measure

--enable-patient Optional,
use only with
--enable-fftw

For search-once-for-the-fastest-algorithm (takes much
more time on p3dfft_setup()).

--enable-patient

--enable-dimsc Optional To assign processor rows and columns in the Cartesian
processor grid according to C convention. The default is
Fortran convention which is recommended. This option
does not affect the order of storage of arrays in memory.

--enable-dimsc

--enable-useeven Optional, rec-
ommended for
Cray XT

This argument is for using MPI_Alltoall instead of
MPI_Alltotallv. This will pad the send buffers
with zeros to make them of equal size; not needed on
most architecture but may lead to better results on Cray
XT.

--enable-useeven

--enable-stride1 Optional, rec-
ommended

To enable stride-1 data structures on output (this may in
some cases give some advantage in performance). You
can define loop blocking factors NLBX and NBLY to ex-
periment, otherwise they are set to default values.

--enable-stride1

--enable-nblx Optional To define loop blocking factor NBL_X --enable-nblx=32
--enable-nbly1 Optional To define loop blocking factor NBL_Y1 --enable-nbly1=32
--enable-nbly2 Optional To define loop blocking factor NBL_Y2 --enable-nbly2=32
--enable-nblz Optional To define loop blocking factor NBL_Z --enable-nblz=32
--enable-single Optional This argument will compile P3DFFT in single-precision.

By default, configure will setup P3DFFT to be compiled
in double-precision.

--enable-single

FC=<Fortran
compiler>

Strongly rec-
ommended

Fortran compiler FC=mpif90

FCFLAGS="<Fortran
compiler flags>"

Optional, rec-
ommended

Fortran compiler flags FCFLAGS="-O3"

CC=<C compiler> Strongly Rec-
ommended

C compiler CC=mpicc

CFLAGS="<C
compiler flags>"

Optional, rec-
ommended

C compiler flags CFLAGS="-O3"

LDFLAGS="<linker
flags>"

Optional Linker flags

4 Chapter 2. Installing P3DFFT
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2.1.1 Compiling on Comet (XSEDE/SDSC)

Choose a MPI.

Com-
piler

Mod-
ules

Arguments

Intel intel,
fftw

./configure –enable-intel –enable-fftw –with-fftw=$FFTWHOME FC=mpif90 CC=mpicc

GNU gnu,
fftw

./configure –enable-gnu –enable-fftw –with-fftw=$FFTWHOME FC=mpif90 CC=mpicc
LDFLAGS=-lm

PGI pgi, fftw ./configure –enable-pgi –enable-fftw –with-fftw=$FFTWHOME FC=mpif90 CC=mpicc

Com-
piler

Mod-
ules

Arguments

Intel intel,
fftw

./configure –enable-intel –enable-fftw –with-fftw=$FFTWHOME FC=mpif90 CC=mpicc
LDFLAGS=-lmpifort

GNU gnu,
fftw

./configure –enable-gnu –enable-fftw –with-fftw=$FFTWHOME FC=mpif90 CC=mpicc
LDFLAGS="-lm -lmpichf90"

PGI pgi,
fftw

./configure –enable-pgi –enable-fftw –with-fftw=$FFTWHOME FC=mpif90 CC=mpicc
LDFLAGS=-lmpichf90

Com-
piler

Mod-
ules

Arguments

Intel intel,
fftw

./configure –enable-intel –enable-fftw –enable-openmpi –with-fftw=$FFTWHOME
FC=mpif90 CC=mpicc

GNU gnu,
fftw

./configure –enable-gnu –enable-fftw –enable-openmpi –with-fftw=$FFTWHOME
FC=mpif90 CC=mpicc LDFLAGS=-lm

PGI pgi,
fftw

./configure –enable-pgi –enable-fftw –enable-openmpi –with-fftw=$FFTWHOME
FC=mpif90 CC=mpicc

2.1.2 Compiling on Stampede2 (XSEDE/TACC)

Choose a MPI.

Com-
piler

Mod-
ules

Arguments

Intel intel,
fftw3

./configure –enable-intel –enable-fftw –with-fftw=$TACC_FFTW3_DIR FC=mpif90
CC=mpicc

GNU gcc ./configure –enable-gnu –enable-fftw –with-fftw=/PATH/TO/FFTW/LIBRARY FC=mpif90
CC=mpicc LDFLAGS=-lm

Note: User must install their own FFTW library for GNU compilers while using Intel MPI due to technical difficulties.

Com-
piler

Mod-
ules

Arguments

Intel intel ./configure –enable-intel –enable-fftw –with-fftw=/PATH/TO/FFTW/LIBRARY FC=mpif90
CC=mpicc LDFLAGS=-lmpifort

2.1. How to compile P3DFFT 5
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Note: Stampede2’s FFTW module is not compatible with its MVAPICH2 module yet. Users must install their own
FFTW library.

2.1.3 Compiling on Bridges (PSC)

Choose a MPI.

Com-
piler

Mod-
ules

Arguments

Intel intel,
fftw3

./configure –enable-intel –enable-fftw –with-fftw=$FFTW3_LIB/.. FC=mpiifort
CC=mpicc LDFLAGS=-lm

Com-
piler

Mod-
ules

Arguments

Intel intel,
fftw3

./configure –enable-intel –enable-fftw –with-fftw=$FFTW3_LIB/.. FC=mpif90 CC=mpicc
LDFLAGS=-lmpifort

GNU gcc,
fftw3

./configure –enable-gnu –enable-fftw –with-fftw=$FFTW3_LIB/.. FC=mpif90 CC=mpicc
LDFLAGS="-lm -lmpichf90"

Com-
piler

Mod-
ules

Arguments

Intel intel,
fftw3

./configure –enable-intel –enable-fftw –enable-openmpi –with-fftw=$FFTW3_LIB/..
FC=mpif90 CC=mpicc

GNU fftw3 ./configure –enable-gnu –enable-fftw –enable-openmpi –with-fftw=$FFTW3_LIB/..
FC=mpif90 CC=mpicc LDFLAGS=-lm

PGI pgi,
fftw3

./configure –enable-pgi –enable-fftw –enable-openmpi –with-fftw=$FFTW3_LIB/..
FC=mpif90 CC=mpicc

6 Chapter 2. Installing P3DFFT



CHAPTER 3

Download P3DFFT

The latest release of P3DFFT can be downloaded here or accessed through its GitHub page.

Be sure to familiarize yourself with the installation instructions in order to build the library.

For more detail and usage instructions, see P3DFFT User Guide.
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CHAPTER 4

P3DFFT User Guide

Version 2.7.5

Copyright (C) 2006-2019 Dmitry Pekurovsky Copyright (C) 2006-2019 University of California

Note: This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http:
//www.gnu.org/licenses/

4.1 Acknowledgements

• Prof. P.K.Yeung

• Dr. Diego Donzis

• Dr. Giri Chukkapalli

• Dr. Geert Brethouwer

Citation: when reporting results obtained with P3DFFT, please cite the following:

D. Pekurovsky, “P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions”, SIAM
Journal on Scientific Computing 2012, Vol. 34, No. 4, pp. C192-C209.
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4.2 Introduction

P3DFFT is a scalable software library implementing three-dimensional spectral transforms. It has been used in a vari-
ety of codes from many areas of computational science. It has been tested and used on many high-end computational
system. It uses two-dimensional domain decomposition in order to overcome a scaling bottleneck of one-dimensional
decomposition. This allows the programs with this library to scale well on a large number of cores, consistent with
bisection bandwidth scaling of interconnect of the underlying hardware system.

Below are the main features of P3DFFT v. 2.7.5:

• Real-to-complex and complex-to-real Fast Fourier Transforms (FFT) in 3D.

• Cosine, sine, and combined Fourier-Chebyshev transform (FFT in 2D and Chebyshev in the third dimension).
Alternatively users can substitute their own transform in the third dimension, for example a compact scheme.

• Fortran and C interfaces

• Built for performance at all ranges of core counts

• Hybrid MPI/OpenMP implementation

• In-place and out-of-place transforms

• Pruned transforms

• Multivariable transforms

4.3 1. Directory Structure and Files

The following is a directory listing for what you should find in the p3dfft package:

Table 1: Directory structure of p3dfft package

Di-
rec-
tory

Description

toplevelThe configure script is located here. Running the configure script is essential for properly building
P3DFFT. Please refer to section 2 of this guide for more information.

build/The library files are contained here. Building the library is required before it can be used. In order to build
the library, you must run ./configure from the top level directory. Then type make and then make
install. For further details on building the library see section 2 of this guide.

include/The library is provided as a Fortran module. After installation this directory will have p3dfft.mod (for
Fortran interface), p3dfft.h (C wrapper/include file), and config.h (header that contains all arguments
used when configure script was executed).

sample/This directory has example programs in both FORTRAN and C, in separate subdirectories. Tests provided
include out-of-place and in-place transforms 3D FFT, with error checking. Also provided is an example
of power spectrum calculation. Example programs will be compiled automatically with the library during
make.

Warning: In order to use P3DFFT with C programs, you must include the p3dfft.h header file in your
program. This header file defines an interface that allows C programs to call Fortran functions from the P3DFFT
library.

10 Chapter 4. P3DFFT User Guide



P3DFFT++ Documentation, Release 3.0.0

In addition to the library itself, the package includes several sample programs to illustrate how to use P3DFFT. These
sample programs can be found in the sample/ directory:

Table 2: Filename and description of samples

Source file-
name

Binary file-
name

Description

driver_inverse.
c,
driver_inverse.
F90

test_inverse_c.
x,
test_inverse_f.
x

This program initializes a 3D array of complex numbers with a 3D
sine/cosine wave, then performs inverse FFT transform, and checks that the
results are correct. This sample program also demonstrates how to work with
complex arrays in wavenumber space, declared as real.

driver_rand.
c,
driver_rand.
F90

test_rand_c.
x,
test_rand_f.
x

This program initializes a 3D array with random numbers, then performs
forward 3D Fourier transform, then backward transform, and checks that the
results are correct, namely the same as in the start except for a normalization
factor. It can be used both as a correctness test and for timing the library
functions.

driver_sine.
c,
driver_sine_inplace.
c,
driver_sine.
F90,
driver_sine_ineplace.
F90

test_sine_c.
x,
test_sine_inplace_c.
x,
test_sine_f.
x,
test_sine_inplace_f.
x

This program initializes a 3D array with a 3D sine wave, then performs 3D
forward Fourier transform, then backward transform, and checks that the
results are correct, namely the same as in the start except for a normalization
factor. It can be used both as a correctness test and for timing the library
functions.

driver_sine_many.
F90,
driver_sine_inplace_many.
F90,
driver_rand_many.
F90

test_sine_many_f.
x,
test_sine_inplace_many_f.
x,
test_rand_many_f.
x

Same as above, but these program tests the multivariable transform feature.
There is an extra parameter in the input file specifying the number of vari-
ables to transform (nv).

driver_spec.
c,
driver_spec.
F90

test_spec_c.
x,
test_spec_f.
x

This program initializes a 3D array with a 3D sine wave, then performs 3D
FFT forward transform, and computes power spectrum.

driver_cheby.
f90

test_cheby_f.
x

This program initializes a 3D array with a sine wave, employing a non-
uniform grid in the Z dimension with coordinates given by cos(k/N). Then
Chebyshev routine is called (p3dfft_cheby) which uses Fourier trans-
form in X and Y and a cosine transform in Z ("ffc"), followed by computa-
tion of Chebyshev coefficients. Then backward "cff" transform is called and
the results are compared with the expected output after Chebyshev differen-
tiation in Z. This program can be used both as correctness and as a timing
test.

driver_noop.
c,
driver_noop.
F90

test_noop_c.
x,
test_noop_f.
x

Similar to the above but instead of Chebyshev transform nothing is done; i.e.
only 2D FFT is performed and then the data is laid out in a format suitable
for a custom transform of the user’s choice in the third dimension (i.e. data
is local for each processor in that dimension).

4.4 2. Installing p3dfft

In order to prepare the P3DFFT for compiling and installation, you must run the included configure script. Here
is a simple example on how to run the configure script:

4.4. 2. Installing p3dfft 11
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$ ./configure --enable-pgi --enable-fftw --with-fftw=/usr/local/fftw/ LDFLAGS="-lmpi_
→˓f90 -lmpi_f77"

The above will prepare P3DFFT to be compiled by the PGI compiler with FFTW support. There are more arguments
included in the configure script that will allow you to customize P3DFFT to your requirements:

Table 3: Arguments of configure script

12 Chapter 4. P3DFFT User Guide
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Argument Notes Description Exam-
ple

--prefix=PREFIX Mandatory for
users with-
out access to
/usr/local

This argument will install P3DFFT to PREFIX when
you run make install. By default, configure will
install to /usr/local.

--prefix=$HOME/
local/

--enable-gnu,
--enable-ibm,
--enable-intel,
--enable-pgi,
--enable-cray

Mandatory These arguments will prepare P3DFFT to be built by a
specific compiler. You must only choose one option.

--enable-pgi

--enable-fftw,
--enable-essl

Mandatory These arguments will prepare P3DFFT to be used with
either the FFTW or ESSL library. You must only choose
one option.

--enable-fftw

--with-fftw=FFTWLOCATIONMandatory if
--enable-fftw
is used

This argument specifies the path location for the FFTW
library; it is mandatory if you are planning to use
P3DFFT with the FFTW library.

--with-fftw=$FFTW_HOME

--enable-openmp Mandatory
if using mul-
tithreaded
version

This argument adds the appropriate compiler flags to en-
able OpenMP.

--enable-openmp

--enable-openmpi Optional This argument uses the OpenMPI implementation of
MPI.

--enable-openmpi

--enable-oned Optional This argument is for 1D decomposition. The default is
2D decomposition but can be made to 1D by setting up
a grid 1xN when running the code.

--enable-oned

--enable-estimate Optional,
use only with
--enable-fftw

If this argument is passed, the FFTW library will not use
run-time tuning to select the fastest algorithm for com-
puting FFTs.

--enable-estimate

--enable-measure Optional,
enabled by
default, use
only with
--enable-fftw

For search-once-for-the-fast algorithm (takes more time
on p3dfft_setup()).

--enable-measure

--enable-patient Optional,
use only with
--enable-fftw

For search-once-for-the-fastest-algorithm (takes much
more time on p3dfft_setup()).

--enable-patient

--enable-dimsc Optional To assign processor rows and columns in the Cartesian
processor grid according to C convention. The default is
Fortran convention which is recommended. This option
does not affect the order of storage of arrays in memory.

--enable-dimsc

--enable-useeven Optional, rec-
ommended for
Cray XT

This argument is for using MPI_Alltoall instead of
MPI_Alltotallv. This will pad the send buffers
with zeros to make them of equal size; not needed on
most architecture but may lead to better results on Cray
XT.

--enable-useeven

--enable-stride1 Optional, rec-
ommended

To enable stride-1 data structures on output (this may in
some cases give some advantage in performance). You
can define loop blocking factors NLBX and NBLY to ex-
periment, otherwise they are set to default values.

--enable-stride1

--enable-nblx Optional To define loop blocking factor NBL_X --enable-nblx=32
--enable-nbly1 Optional To define loop blocking factor NBL_Y1 --enable-nbly1=32
--enable-nbly2 Optional To define loop blocking factor NBL_Y2 --enable-nbly2=32
--enable-nblz Optional To define loop blocking factor NBL_Z --enable-nblz=32
--enable-single Optional This argument will compile P3DFFT in single-precision.

By default, configure will setup P3DFFT to be compiled
in double-precision.

--enable-single

FC=<Fortran
compiler>

Strongly rec-
ommended

Fortran compiler FC=mpif90

FCFLAGS="<Fortran
compiler flags>"

Optional, rec-
ommended

Fortran compiler flags FCFLAGS="-O3"

CC=<C compiler> Strongly Rec-
ommended

C compiler CC=mpicc

CFLAGS="<C
compiler flags>"

Optional, rec-
ommended

C compiler flags CFLAGS="-O3"

LDFLAGS="<linker
flags>"

Optional Linker flags

4.4. 2. Installing p3dfft 13
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More information on how to customize the configure script can be found by calling:

$ ./configure --help

For a up-to-date list of configure commands for various platforms please refer to Installing P3DFFT page.

After you have successfully run the configure script, you are ready to compile and install P3DFFT. Simply run:

$ make
$ make install

4.5 3. p3dfft module

The p3dfft module declares important variables. It should be included in any code that calls p3dfft routines (via
using p3dfft statement in Fortran).

The p3dfft module also specifies mytype, which is the type of real and complex numbers. You can choose
precision at compile time through a preprocessor flag (see Installing P3DFFT page).

4.6 4. Initialization

Before using the library it is necessary to call an initialization routine p3dfft_setup.

Usage:

p3dfft_setup(proc_dims, nx, ny, nz, mpi_comm_in, nx_cut, ny_cut, nz_cut, overwrite,
→˓memsize)

Table 4: Arguments of p3dfft_setup

Argu-
ment

In-
tent

Description

proc_dimsIn-
put

An array of two integers, specifying how the processor grid should be decomposed. Either 1D or
2D decomposition can be specified. For example, when running on 12 processors, (4,3) or (2,6)
can be specified as proc_dims to indicate a 2D decomposition, or (1,12) can be specified for 1D
decomposition. proc_dims values are used to initialize P1 and P2.

nx,
ny, nz

In-
put

(Integer) Dimensions of the 3D transform (also the global grid dimensions)

mpi_comm_inIn-
put

(Integer) MPI Communicator containing all MPI tasks that participate in the partition (in most
cases this will be MPI_COMM_WORLD).

nx_cut,
ny_cut,
nz_cut

In-
put
(op-
tional)

(Integer) Pruned dimensions on output/input (default is same as nx, ny, nz)

over-
write

In-
put
(op-
tional)

(Logical) When set to true. (or 1 in C) this argument indicates that it is safe to overwrite
the input of the btran (backward transform) routine. This may speed up performance of FFTW
routines in some cases when non-stride-1 transforms are made.

mem-
size

Out-
put
(op-
tional)

Optional argument (array of 3 integers). Memsize can be used to allocate arrays. It contains
the dimensions of real-space array that are large enough to contain both input and output of an
in-place 3D FFT real-to-complex transform defined by nx, ny, nz, nx_cut, ny_cut, nz_cut.

14 Chapter 4. P3DFFT User Guide
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4.7 5. Array Decomposition

The p3dfft_setup routine sets up the two-dimensional (2D) array decomposition. P3DFFT employs 2D block de-
composition whereby processors are arranged into a 2D grid P1 x P2, based on their MPI rank. Two of the dimensions
of the 3D grid are block-distributed across the processor grid, by assigning the blocks to tasks in the rank order. The
third dimension of the grid remains undivided, i.e. contained entirely within local memory (see Fig. 1). This scheme
is sometimes called pencils decomposition.

A block decomposition is defined by dimensions of the local portion of the array contained within each task, as well
as the beginning and ending indices for each dimension defining the array’s location within the global array. This
information is returned by p3dfft_get_dims routine which should be called before setting up the data structures
of your program (see sample/ subdirectory for example programs).

In P3DFFT, the decompositions of the output and input arrays, while both being two-dimensional, differ from each
other. The reason for this is as follows. In 3D Fourier Transform it is necessary to transpose the data a few times (two
times for two-dimensional decomposition) in order to rearrange the data so as to always perform one-dimensional
FFT on data local in memory of each processing element. It would be possible to transpose the data back to the
original form after the 3D transform is done, however it often makes sense to save significant time by forgoing this
final transpose. All the user has to do is to operate on the output array while keeping in mind that the data are in a
transposed form. The backward (complex-to-real) transform takes the array in a transposed form and produces a real
array in the original form. The rest of this section clarifies exactly the original and transposed form of the arrays.

Starting with v. 2.7.5 P3DFFT features optional hybrid MPI/OpenMP implementation. In this case the MPI decompo-
sition is the same as above, and each MPI task now has Nthr threads. This essentially implements 3D decomposition,
however the results are global arrays (in the OpenMP sense) so they can be used either with multi- or single-threaded
program. The number of threads is specified through the environment variable OMP_NUM_THREADS.

Usage:

p3dfft_get_dims(start,end,size,ip)

Table 5: Arguments of p3dfft_get_dims()

Ar-
gu-
ment

In-
tent

Description

start Out-
put

An array containing 3 integers, defining the beginning indices of the local array for the given task
within the global grid.

end Out-
put

An array containing 3 integers, defining the ending indices of the local array within the global grid
(these can be computed from start and size but are provided for convenience).

size Out-
put

An array containing 3 integers, defining the local array’s dimensions.

my-
pad

Out-
put/Optional

This argument is optional and is used in in-place transforms, to obtain the value of padding that
should be used in the third dimension of the input array (since input and output arrays may not have
the same memory size)

ip In-
put

ip=1: "Original": a "physical space" array of real numbers, local in X, distributed among P1 tasks
in Y dimension and P2 tasks in Z dimension, where P1 and P2 are processor grid dimensions defined
in the call to p3dfft_setup. Usually this type of array is an input to real-to-complex (forward) trans-
form and an output of complex-to-real (backward) transform. ip=2: "Transposed": a "wavenumber
space" array of complex numbers, local in Z, distributed among P1 tasks in X dimension, P2 tasks
in Y dimension. Usually this type of array is an output of real-to- complex (forward) transform and
an input to complex-to-real, backward transform. ip=3: the routine returns three numbers corre-
sponding to "padded" dimensions in the physical space, i.e. an array with these dimensions will be
large enough both for physical and wavenumber space. Example of use of this feature can be found
in driver_sine_inplace.F90 sample program.

4.7. 5. Array Decomposition 15
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Warning: The layout of the 2D processor grid on the physical network is dependent on the architecture and
software of the particular system, and can have some impact on efficiency of communication. By default, rows
have processors with adjacent task IDs (this corresponds to "FORTRAN" type ordering). This can be changed to
"C" ordering (columns have adjacent task IDs) by building the library with -DDIMS_C preprocessor flag. The
former way is recommended on most systems.

P3DFFT uses 2D block decomposition to assign local arrays for each task. In many cases decomposition will not be
entirely even: some tasks will get more array elements than others. P3DFFT attempts to minimize load imbalance.
For example, the grid dimensions are 128x256x256 and the processor grid is defined as 3x4, the original (ip=1)
decomposition calls for splitting 256 elements in Y dimension into three processor row. In this case, P3DFFT will
break it up into pieces of 86, 85 and 85 elements. The transposed (ip=2) decomposition will have local arrays with X
dimensions 22, 22 and 21 respectively for processor rows 1 through 3 (the sum of these numbers is 65=(nx+2)/2 since
these are now complex numbers instead of reals, and an extra mode for Nyquist frequency is needed – see Section 5
for an explanation).

It should be clear that the user’s choice of P1 and P2 can make a difference on how balanced is the decomposition.
Obviously the greater load imbalance, the less performance can be expected.

Note: The two array types are distributed among processors in a different way from each other, but this does not auto-
matically imply anything about the ordering of the elements in memory. Memory layout of the original (ip=1) array
uses the "Fortran" ordering. For example, for an array A(lx,ly,lz) the index corresponding to lx runs fastest. Memory
layout for the transposed (ip=2) array type depends on how the P3DFFT library was built. By default, it preserves
the ordering of the real array, i.e. (X,Y,Z). However, in many cases it is advisable to have Z dimension contiguous,
i.e. a memory layout (Z,Y,X). This can speed up some computations in the wavenumber space by improving cache
utilization through spatial locality in Z, and also often results in better performance of P3DFFT transforms themselves.
The (Z,Y,X) layout can be triggered by building the library with -DSTRIDE1 preprocessor flag in the makefile. For
more information, see performance section below.

Table 6. Mapping of the data array onto processor grid and memory layout

Physical space Fourier space
STRIDE1 defined Nx, Ny/M1, Nz/M2 Nz, Ny/M2, (Nx+2)/(2M1)
STRIDE1 undefined Nx, Ny/M1, Nz /M2 (Nx+2)/(2M1), Ny/M2 ,Nz

4.8 6. Forward (real-to-complex) and backward (complex-to-real) 3D
Fourier transforms

P3DFFT versions 2.7.1 and higher implement transforms for one or more than one independent arrays/variables simul-
taneously. An example of this is 3 components of a velocity field. Multivariable transforms achieve greater speed than
single-variable transforms, especially for grids of smaller size, due to buffer aggregation in inter-processor exchanges.

Forward transform is implemented by the p3dfft_ftran_r2c subroutine using the following format:

p3dfft_ftran_r2c(IN,OUT,op)

The input IN is an array of real numbers with dimensions defined by array type with ip=1 (see Table 2 above),
with X dimension contained entirely within each task, and Y and Z dimensions distributed among P1 and P2 tasks
correspondingly. The output OUT is an array of complex numbers with dimensions defined by array type with ip=2,
i.e. Z dimension contained entirely, and X and Y dimensions distributed among P1 and P2 tasks respectively. The op
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argument is a 3- letter character string indicating the type of transform desired. Currently only Fourier transforms are
supported in X and Y (denoted by symbol f ) and the following transforms in Z:

Table 7. Suuported types of transforms in Z

t or f Fourier Transform
c Cosine Transform
s Sine Transform
n or 0 Empty transform (no operation takes place, output is the same as input)

Empty transform can be useful for someone implementing custom transform in Z dimension. Example: op='ffc'
means Fourier transform in X and Y, and a cosine transform in Z. The DCT-I kind of transform is performed (DST-I
for sine), the definition of which can be found here.

Backward transform is implemented by the p3dfft_btran_c2r subroutine using the following format:

p3dfft_btran_c2r(IN,OUT,op)

The input IN is an array of complex numbers with dimensions defined by array type with ip=2 (see Table 2 above),
i.e. Z dimension is contained entirely, and X and Y dimensions are distributed among P1 and P2 tasks correspondingly.
The output OUT is an array of real numbers with dimensions defined by array type with ip=1, i.e. X dimension is
contained entirely within each task, and Y and Z are dimensions distributed among P1 and P2 tasks respectively. The
op argument is similar to forward transform, with the first character of the string being one of t, c, s, n, or 0, and the
second and third being f. Example: op='nff' means no operation in Z, backward Fourier transforms in Y and X.

4.9 7. Complex array storage definition

Since Fourier transform of a real function has the property of conjugate symmetry, only about half of the complex
Fourier coefficients need to be kept. To be precise, if the input array has n real elements, Fourier coefficients F(k) for
k=n/2+1,..,n can be dropped as they can be easily restored from the rest of the coefficients. This saves both memory
and time. In this version we do not attempt to further pack the complex data. Therefore the output array for the forward
transform (and the input array of the backward transform) contains (nx/2+1) times ny times nz complex numbers, with
the understanding that nx/2-1 elements in X direction are missing and can be restored from the remaining elements.
As mentioned above, the nx/2+1 elements in the X direction are distributed among P1 tasks in the transposed layout.

4.10 8. Multivariable transforms

Sometime communication performance of transposes such as those included in P3DFFT can be improved by com-
bining several transforms into a single operation. (This allows us to aggregate messages during interprocessor data
exchange). This is especially important when transforming small grids and/or when using systems with high intercon-
nect latencies. P3DFFT provides multivariable transforms to make use of this idea. Instead of an 3D array as input
parameter these subroutines accept a 4D array, with the extra dimension being the index of independent variables
to be transformed (for example this could be 3 velocity components). The following is the syntax for multivariable
transforms:

p3dfft_ftran_many_r2c(IN,dim_in,OUT,dim_out,nv,op)

p3dfft_btran_many_c2r(IN,dim_in,OUT,dim_out,nv,op)

The multivariable transform routines for both forward and backward transforms have an additional argument nv (in-
teger) representing the number of independent variables in the input/output arrays. The spacing between these inde-
pendent variables is defined by dim_in and dim_out (integer) arguments for input/output arrays respectively. Both
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dim_in and dim_out should not be less than the size of the grid returned by get_dims routine. See sample pro-
gram driver_sine_many.F90, driver_sine_inplace_many.F90, or driver_rand_many.F90 for
an example of such use.

4.11 9. Pruned transforms

Sometimes only a subset of output modes is needed to be retained (for forward transform), or a subset of input modes
is used, the rest being zeros (for backward transform). Such transforms are called pruned transforms. Leaving off
redundant modes can lead to significant savings of time and memory. The reduced dimensions nx_cut, ny_cut, and
nz_cut are arguments to p3dfft_setup. By default they are equal to nx, ny, nz. If they are different from the
above (smaller) the output of forward transforms will be reduced in size correspondingly. The input for backward
transform will also be smaller in size. It will be automatically padded with zeros until it reaches nx, ny, nz.

4.12 10. In-place transforms

In and Out arrays can occupy the same space in memory (in-place transform). In this case, it is necessary to make
sure that they start in the same location, otherwise the results are unpredictable. Also it is important to remember that
the sizes of input and output arrays in general are not equal. The complex array is usually bigger since it contains the
Nyquist frequency mode in X direction, in addition to the nx/2 modes that equal in space to nx real numbers. However
when decomposition is not even, sometimes the real array can be bigger than the complex one, depending on the task
ID. Therefore to be safe one must make sure the common-space array is large enough for both input and output. This
can be done by using memsize argument when calling p3dfft_setup. It returns the maximum array size for both
input and output. Alternatively, one can call p3dfft_get_dims two times with ip=1 and ip=2.

In Fortran using in-place transforms is a bit tricky due to language restrictions on subroutine argument types (i.e., one
of the arrays is expected to be real and the other complex). In order to overcome this problem wrapper routines are
provided, named ftran_r2c and btran_c2r respectively for forward and backward transform (without p3dfft
prefix). There are examples for such in-place transform in the sample/ subdirectory. These wrappers can be also
used for out-of-place transforms just as well.

4.13 11. Memory requirements

Besides the input and output arrays (which can occupy the same space, as mentioned above) P3DFFT allocates tem-
porary buffers roughly 3 times the size of the input or output array.

4.14 12. Performance considerations

P3DFFT was created to compute 3D FFT in parallel with high efficiency. In particular it is aimed for applications
where the data volume is large. It is especially useful when running applications on ultra-scale parallel platforms
where one-dimensional decomposition is not adequate. Since P3DFFT was designed to be portable, no effort is made
to do architecture-specific optimization. However, the user is given some choices in setting up the library, mentioned
below, that may affect performance on a given system. Current version of P3DFFT uses ESSL or FFTW library for it
1D FFT routines. ESSL [1] provides FFT routines highly optimized for IBM platforms it is built on. The FFTW [2],
while being generic, also makes an effort to maximize performance on many kinds of architectures. Some performance
data will be uploaded at the P3DFFT Web site. For more questions and comments please contact dmitry@sdsc.edu.

Optimal performance on many parallel platforms for a given number of cores and problem size will likely depend on
the choice of processor decomposition. For example, given a processor grid P1 x P2 (specified in the first argument
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to p3dfft_setup) performance will generally be better with smaller P1 (with the product P1 x P2 kept constant).
Ideally P1 will be equal or less than the number of cores on an SMP node or a multi-core chip. In addition, the closer
a decomposition is to being even, the better load balancing.

Beginning with v.2.7.5 P3DFFT is equipped with MPI/OpenMP capability. If use of this feature is needed simply set
the desired number of threads through environment variable OMP_NUM_THREADS. The optimal number of threads,
just like the processor grid, depends on specific platform and problem.

Performance is likely to be better when P3DFFT is built using --enable-stride1 during configure. This
implies stride-1 data ordering for FFTs. Note that using this argument changes the memory layout of the trans-
posed array (see section 3 for explanation). To help tune performance further, two more arguments can be used:
--enable-dnblx=... and --enable-dnbly=..., which define block sizes in X and Y when doing local ar-
ray reordering. Choosing suitable block sizes allows the program to optimize cache performance, although by default
P3DFFT chooses these values based on a good guess according to cache size.

Finally, performance will be better if overwrite parameter is set to true. (or 1 in C) when initializing P3DFFT.
This allows the library to overwrite the input array, which results in significantly faster execution when not using the
--enable-stride1 argument.

4.15 13. References

1. ESSL library, IBM, http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.
essl.doc/esslbooks.html

2. Matteo Frigo and Steven G. Johnson, "The Design and Implementation of FFTW3", Proceedings of the IEEE
93 (2), 216–231 (2005). Invited paper, Special Issue on Program Generation, Optimization, and Platform Adap-
tation.

3. D. Pekurovsky, “P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions”,
SIAM Journal on Scientific Computing 2012, Vol. 34, No. 4, pp. C192-C209.
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CHAPTER 5

Installing P3DFFT++

The latest version of P3DFFT++ can be found here. Once you have extracted the package, you must take the following
steps to complete the setup:

1. Run the configure script

2. Run make

3. Run make install

5.1 How to compile P3DFFT++

P3DFFT++ uses a configure script to create Makefile for compiling the library as well as several examples.
This page will step you through the process of running the configure script properly.

Run configure --help for complete list of options. For Cray XT platforms also recommended
--enable-useeven.

Currently the package supports four compiler suites: PGI, Intel, IBM and GNU. Some examples of compiling on
several systems are given below. Users may need to customize as needed. If you wish to share more examples or to
request or contribute in support for other compilers, please write to dmitry@sdsc.edu. If you give us an account on
your system we will work with you to customize the installation.
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Argument Notes Description Exam-
ple

--prefix=PREFIX Mandatory for
users with-
out access to
/usr/local

This argument will install P3DFFT++ to PREFIX when
you run make install. By default, configure
will install to /usr/local.

--prefix=$HOME/
local/
.

--enable-gnu,
--enable-ibm,
--enable-intel,
--enable-pgi,
--enable-cray

Mandatory These arguments will prepare P3DFFT++ to be built by
a specific compiler. You must only choose one option.

--enable-pgi

--enable-fftw,
--enable-essl

Mandatory These arguments will prepare P3DFFT++ to be used
with either the FFTW or ESSL library. You must only
choose one option.

--enable-fftw

--with-fftw=FFTW_DIRMandatory if
--enable-fftw
is used

This argument specifies the path location for the FFTW
librarys directory; it is mandatory if you are planning to
use P3DFFT++ with the FFTW library.

--with-fftw=$FFTW_DIR

--enable-estimate Optional,
use only with
--enable-fftw

If this argument is passed, the FFTW library will not use
run-time tuning to select the fastest algorithm for com-
puting FFTs.

--enable-estimate

--enable-measure Optional,
enabled by
default, use
only with
--enable-fftw

For search-once-for-the-fast algorithm (takes more time
on p3dfft_setup()).

--enable-measure

--enable-patient Optional,
use only with
--enable-fftw

For search-once-for-the-fastest-algorithm (takes much
more time on p3dfft_setup()).

--enable-patient

--enable-dimsc Optional To assign processor rows and columns in the Cartesian
processor grid according to C convention. The default is
Fortran convention which is recommended. This option
does not affect the order of storage of arrays in memory.

--enable-dimsc

FC=<Fortran
compiler>

Strongly rec-
ommended

Fortran compiler FC=mpif90

FCFLAGS="<Fortran
compiler flags>"

Optional, rec-
ommended

Fortran compiler flags FCFLAGS="-O3"

CC=<C compiler> Strongly Rec-
ommended

C compiler CC=mpicc

CFLAGS="<C
compiler flags>"

Optional, rec-
ommended

C compiler flags CFLAGS="-O3"

CXX=<C++
compiler>

Strongly Rec-
ommended

C++ compiler CXX=mpicxx

CXXFLAGS="<C++
compiler flags>"

Optional, rec-
ommended

C++ compiler flags CXXFLAGS="-O3"

LDFLAGS="<linker
flags>"

Optional Linker flags
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5.1.1 Compiling on Comet (XSEDE/SDSC)

Com-
piler

Mod-
ules

Arguments

Intel intel,
fftw

./configure –enable-intel –enable-fftw –with-fftw=$FFTWHOME FC=mpif90 CC=mpicc
CXX=mpicxx

GNU gnu,
fftw

./configure –enable-gnu –enable-fftw –with-fftw=$FFTWHOME FC=mpif90 CC=mpicc
CXX=mpicxx

PGI pgi, fftw ./configure –enable-pgi –enable-fftw –with-fftw=$FFTWHOME FC=mpif90 CC=mpicc
CXX=mpicxx

5.1.2 Compiling on Stampede2 (XSEDE/TACC)

Com-
piler

Mod-
ules

Arguments

Intel intel,
fftw3

./configure –enable-intel –enable-fftw –with-fftw=$TACC_FFTW3_DIR FC=mpif90
CC=mpicc CXX=mpicxx

GNU gcc,
fftw3

./configure –enable-gnu –enable-fftw –with-fftw=$TACC_FFTW3_DIR FC=mpif90
CC=mpicc CXX=mpicxx

5.1.3 Compiling on Bridges (PSC)

Com-
piler

Mod-
ules

Arguments

Intel intel,
fftw3

./configure –enable-intel –enable-fftw –with-fftw=$FFTW3_LIB/.. FC=mpiifort
CC=mpiicc CXX=mpiicpc

GNU gcc,
fftw3

./configure –enable-gnu –enable-fftw –with-fftw=$FFTW3_LIB/.. FC=mpif90 CC=mpicc
CXX=mpicxx

PGI pgi,
fftw3

./configure –enable-pgi –enable-fftw –with-fftw=$FFTW3_LIB/.. FC=mpif90 CC=mpicc
CXX=mpicxx

5.1.4 Compiling on Summit (OLCF)

Com-
piler

Mod-
ules

Arguments

GNU gcc,
fftw

./configure –enable-gnu –enable-fftw –with-fftw=$OLCF_FFTW_ROOT FC=mpif90
CC=mpicc CXX=mpiCC

PGI pgi,
fftw

./configure –enable-pgi –enable-fftw –with-fftw=$OLCF_FFTW_ROOT FC=mpif90
CC=mpicc CXX=mpiCC

5.1. How to compile P3DFFT++ 23
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CHAPTER 6

Download P3DFFT++

The latest release of P3DFFT++ can be downloaded here.

To install, modify the Makefile to set C++ MPI-enabled compiler appropriate to your system. Also edit the location
of FFTW or MKL libraries. Several site-specific makefiles are provided as examples. make lib will build the
library.

In addition, if you wish to build example programs in C++, C and/or Fortran, follow the same steps for Makefile in
each of the subdirectories. Then type make samples in the top directory to build all 3 language examples. make
all or make builds both library and examples.

25
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CHAPTER 7

P3DFFT++ Documentation

The new generation of P3DFFT library (dubbed P3DFFT++ or P3DFFT v.3) is a generalization of the concept of
P3DFFT for more arbitrary data formats and transform functions. It is now in beta testing and is available from its
GitHub page. Language-specific reference is provided in Tutorial as well as in separate Reference documents (see
C++, C and Fortran). Makefile examples are provided for each language to illustrate how P3DFFT++ is to be linked
with a user program.

7.1 P3DFFT++ Tutorial

7.1.1 General considerations

P3DFFT++ is written in C++ and contains wrappers providing easy interfaces with C and Fortran.

For C++ users all P3DFFT++ objects are defined within the p3dfft namespace, in order to avoid confusion with
user-defined objects. For example, to initialize P3DFFT++ it is necessary to call the function p3dfft::setup(),
and to exit P3DFFT++ one should call p3dfft::cleanup() (alternatively, one can use namespace p3dfft and
call setup() and cleanup()). From here on in this document we will omit the implicit p3dfft:: prefix from
all C++ names.

In C and Fortran these functions become p3dfft_setup and p3dfft_cleanup. While C++ users can directly
access P3DFFT objects such as DataGrid class, C and Fortran users will access these through handles provided by
corresponding wrappers (see more details below).

7.1.2 Data types

P3DFFT++ currently operates on four main data types:

1. float (single precision floating point)

2. double (double precision floating point)

3. mycomplex (single precision complex number) (equivalent to complex<float>)
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4. complex_double (double precision complex number) (equivalent to complex<double>)

7.1.3 Data layout

While P3DFFT had the assumption of predetermined 2D pencils in X and in Z dimensions as the primary data storage,
P3DFFT++ relaxes this assumption to include more general formats, such as arbitrary shape and memory order 2D
pencils as well as 3D blocks. Below is the technical description of how to specify the data layout formats.

Specification of data layout consists of data and processor grid descriptors. ProcGrid decsriptor contains dimensions
of the procesor grid (in up to 3 dimensions) and the associated MPI Cartesian sub-communicators. DataGrid is a
metadata descriptor, containing information about data grid dimensions and their mapping onto processor grid and
local memory. In C++ each of these descriptors is defined as a class, while in C and in Fortran it is defined through
handles to a C++ object through inter-language wrappers. Below is the technical description of the definition for each
language.

C++

The following is a main constructor call for the ProcGrid class:

ProcGrid(int pdims[3],MPI_Comm mpicomm)

The following is the main constructor call for the DataGrid class:

DataGrid(int gdims[3],int dim_conj_sym, ProcGrid *pgrid,int dmap[3],int mem_order[3])

Ar-
gu-
ment

Description

gdims The three global dimensions of the grid to be decomposed. Here the Fortran-inspired convention is followed:
the first of the three numbers specifies the dimension with the fastest changing index, i.e. the first logical
dimension (X).

dim_conj_symThe dimension of conjugate symmetry where we store N/2+1 of the data after Real-to-complex transform
due to conjugate symmety;(-1 for none)

pgrid The processor grid to be used in decomposition. See above.
dmap The mapping of data grid dimensions into processor grid dimensions. For example, dmap=(1,0,2) implies

second data dimension being spanned by the first processor grid dimension, first data dimension being
spanned by the second processor grid dimension, and the third data dimension is mapped onto third processor
dimension.

mem_orderThe relative ordering of the three dimensions in memory within the local portion of the grid. Here C-style
indexing is used (indices start with 0). The simplest ordering {0,1,2} corresponds to the first logical dimen-
sion being stored with the fastest changing index (memory stride=1), followed by the second (stride=L0) and
the third dimension (stride=L0*L1), where Li is the size of local grid in i’s dimension for a given MPI task.
This corresponds to a C array A[L2][L1][L0]. As another example, ordering {2,0,1} means that the second
dimension (L1) is stored with the fastest-changing index (memory stride=1), the third dimension dimension
(L2) with the medium stride =L1, and the first dimension is stored with the slowest index, stride=L1*L2.
This would correspond to a C array A[L0][L2][L1].

Here is an example where we first define a 2D processor grid with dimensions 2x4 and then define a data grid mapping
onto the processor grid.
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main() {

...

int gdims= {128, 128, 128};

int pdims[]={1,2,4};

int dmap[] = {0,1,2}; //X-pencil

int mem_order={0,1,2};

ProcGrid *pgrid = new ProcGrid(pdims,MPI_COMM_WORLD);

DataGrid mygrid(gdims, -1, pgrid, dmap, mem_order);
}

Upon construction the DataGrid object defines several useful parameters, available by accessing the following
public class members of DataGrid:

Mem-
ber

Descripton

int
Ldims[3]

Dimensions of the local portion of the DataGrid (ldims[0]=gdims[0]/pdims[0] etc). Note:
these dimensions are specified in the order of logical grid dimensions and may differ from memory
storage order, which is defined by mem_order.

int nd Number of dimensions of the processor grid (1, 2 or 3).
int
L[3]

0 to 3 local dimensions (i.e. not split).

int
D[3]

0 to 3 split dimensions.

int
Glob-
Start[3]

Coordinates of the lowest element of the local grid within the global array. This is useful for reconstruct-
ing the global grid from grid pieces for each MPI task.

and other useful information. The DataGrid class also provides a copy constructor.

To release a DataGrid object, simply delete it.

C

For C users, grid initialization is accomplished by a call to p3dfft_init_proc_grid and
p3dfft_init_data_grid. the latter returns a pointer to an object of type Grid. This type is a C struc-
ture containing a large part of the C++ class DataGrid. Calling p3dfft_init_data_grid initializes the C++
DataGrid object and also copies the information into a Grid object accessible from C, returning its pointer. For
example:

int xdim,pgrid;

int dmap[] = {0,1,2};
int mem_order[] = {0,1,2};
int pdims[] = {1,2,4};

Grid *grid1;

(continues on next page)
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pgrid = p3dfft_init_proc_grid(pdims,MPI_COMM_WORLD);

grid1 = p3dfft_init_data_grid(gdims, dim_conj_sym, pgrid, dmap, mem_order, mpicomm);

xdim = grid1->Ldims[0]; /* Size of zero logical dimension of the local portion of the
→˓grid for a given processor */

To release a grid object simply execute:

p3dfft_free_data_grid(Grid *gr);

Fortran

For Fortran users the ProcGrid and DataGrid objects are represented as handles of type integer(C_INT).
For example:

integer(C_INT) pgrid,grid1

integer ldims(3),glob_start(3),gdims(3),dim_conj_sym,pgrid,pdims(3),dmap(3),mem_
→˓order(3)

pgrid = p3dfft_init_proc_grid(pdims,MPI_COMM_WORLD)

grid1 = p3dfft_init_data_grid(ldims, glob_start, gdims, dim_conj_sym, pgrid, dmap,
→˓mem_order)

This call initializes a C++ DataGrid object as a global variable and assigns an integer ID, returned in this example
as grid1. In addition this call also returns the dimensions of the local portion of the DataGrid (Ldims) and the
position of this portion within the global array (GlobStart).

Other elements of the C++ DataGrid object can be accessed through respective functions, such as
p3dfft_grid_get_....

To release a DataGrid object, simply call:

p3dfft_free_data_grid_f(gr)

where gr is the DataGrid handle.

7.1.4 P3DFFT++ Transforms

P3DFFT++ aims to provide a versatile toolkit of algorithms/transforms in frequent use for solving multiscale problems.
To give the user maximum flexibility there is a range of algorithms from top-level algorithms operating on the entire
3D array, to 1D algorithms which can function as building blocks the user can arrange to suit his/her needs. In addition,
inter-processor exchanges/transposes are provided, so as to enable the user to rearrange the data from one orientation
of pencils to another, as well as other types of exchanges. In P3DFFT++ the one-dimensional transforms are assumed
to be expensive in terms of memory bandwidth, and therefore such transforms are performed on local data (i.e. in the
dimension that is not distributed across processor grid). Transforms in three dimensions consist of three transforms
in one dimension, interspersed by inter-processor interchange as needed to rearrange the data. The 3D transforms are
high-level functions saving the user work in arranging the 1D transforms and transposes, as well as often providing
superior performance. We recommend to use 3D transforms whenever they fit the user’s algorithm.

Although syntax for C++, C and Fortran is different, using P3DFFT++ follows the same logic. P3DFFT++ functions
in a way similar to FFTW: first the user needs to plan a transform, using a planner function once per each transform
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type. The planner function initializes the transform, creates a plan and stores all information relevant to this transform
inside P3DFFT++. The users gets a handle referring to this plan (the handle is a class in C++, and an integer variable
in C or Fortran) that can be later used to execute this transform, which can be applied multiple times. The handles can
be released after use.

In order to define and plan a transform (whether 1D or 3D, in C++, C or Fortran) one needs to first define initial and
final DataGrid objects. They contain all the necessary grid decomposition parameters. P3DFFT++ figures out the
optimal way to transpose the data between these two DataGrid configurations, assuming they are consistent (i.e.
same grid size, number of tasks etc).

7.1.5 One-dimensional (1D) Transforms

1D transforms is the smaller building block for higher dimensional transforms in P3DFFT++. They include different
flavors of Fast Fourier Transforms (FFTs), empty transform (provided for convenience, as in the case where a user
might want to implement their own 1D transform, but is interested in memory reordering to arrange the transform
dimension for stride-1 data access), and (in the future) other transforms that share the following property: they are
memory bandwidth and latency intensive, and are optimally done when the dimension the transform operates on is
entirely within one MPI task’s domain.

1D transforms can be done with or without data exchange and/or memory reordering. In general, combining a trans-
form with an exchange/reordering can be beneficial for performance due to cache reuse, compared to two separate
calls to a transform and an exchange.

The following predefined 1D transforms are available (in C++ the P3DFFT_ prefix can be omitted if used within
P3DFFT namespace).

Transform Description
P3DFFT_EMPTY_TYPE Empty transform.
P3DFFT_R2CFFT_S,
P3DFFT_R2CFFT_D

Real-to-complex forward FFT (as defined in FFTW manual), in single and dou-
ble precision respectively.

P3DFFT_C2RFFT_S,
P3DFFT_C2RFFT_D

Complex-to-real backward FFT (as defined in FFTW manual), in single and dou-
ble precision respectively.

P3DFFT_CFFT_FORWARD_S,
P3DFFT_CFFT_FORWARD_D

Complex forward FFT (as defined in FFTW manual), in single and double preci-
sion respectively.

P3DFFT_CFFT_BACKWARD_S,
P3DFFT_CFFT_BACKWARD_D

Complex backward FFT (as defined in FFTW manual), in single and double
precision respectively.

P3DFFT_DCT<x>_REAL_S,
P3DFFT_DCT1_REAL_D

Cosine transform for real-numbered data, in single and double precision, where
<x> stands for the variant of the cosine transform, such as DCT1, DCT2, DCT3,
or DCT4.

P3DFFT_DST<x>_REAL_S,
P3DFFT_DST1_REAL_D

Sine transform for real-numbered data, in single and double precision, where
<x> stands for the variant of the cosine transform, such as DST1, DST2, DST3,
or DST4.

P3DFFT_DCT<x>_COMPLEX_S,
P3DFFT_DCT1_COMPLEX_D

Cosine transform for complex-numbered data, in single and double precision,
where <x> stands for the variant of the cosine transform, such as DCT1, DCT2,
DCT3, or DCT4.

P3DFFT_DST<x>_COMPLEX_S,
P3DFFT_DST1_COMPLEX_D

Sine transform for complex-numbered data, in single and double precision,
where <x> stands for the variant of the cosine transform, such as DST1, DST2,
DST3, or DST4.

C++

Below is an example of how a 1D transform can be called from C++. In this example, real-to-complex transform in
double precision is planned and then performed. First a constructor for class transplan is called:
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transplan<double,complex_double> trans_f(gridIn, gridOut, R2C_FFT_D, dim, false);

Here gridIn and gridOut are initial and final DataGrid objects, describing, among other things, initial and final
memory ordering of the grid storage array (ordering can be the same or different for input and output). dim is the
dimension/rank to be transformed. Note that this is the logical dimension rank (0 for X, 1 for Y, 2 for Z), and may not
be the same as the storage dimension, which depends on mem_order member of gridIn and gridOut. The transform
dimension of the DataGrid is assumed to be MPI task-local. The second last parameter is a bool variable telling
P3DFFT++ whether this is an in-place or out-of-place transform. Note that in C++ the P3DFFT_ prefix for transform
types is optional.

When a transplan constructor is called as above, P3DFFT++ stores the parameters of the 1D transform and if
needed, plans its execution (i.e. as in FFTW planning) and stores the plan handle. This needs to be done once per
transform type. In order to execute the transform, simply call exec member of the class, e.g.:

trans_f.exec((char *) In,(char *) Out);

Here In and Out are pointers to input and output arrays. In this case they are of type double and
complex_double, however in this call they are cast as char*, as required by P3DFFT++. They contain the
local portion of the 3D input and output arrays, arranged as a contiguous sequence of numbers according to local grid
dimensions and the memory order of gridIn and gridOut classes, respectively. If the transform is out-of-place, then
these arrays must be non-overlapping. The execution can be performed many times with the same handle and same or
different input and output arrays.This call will perform the 1D transform specified when the transplan object was
constructed, along the dimension dim. Again, the logical dimension specified as dim in the planning stage must be
MPI-local for both input and output arrays. Other utilities allow the user to transpose the grid arrays in MPI/processor
space (see MPIplan and transMPIplan).

To release the transform handle simply delete the transplan class object.

C

Here is an example of initializing and executing a 1D transform (again, a real-to-complex double precision FFT) in a
C program.

Grid *gridIn, *gridOut;

Plan3D trans_f;

...

gridIn = p3dfft_init_data_grid(gdimsIn, pgrid, DmapIn, mem_orderIn);
gridOut = p3dfft_init_data_grid(gdimsOut, pgrid, DmapOut, mem_orderOut);

trans_f = p3dfft_plan_1Dtrans(gridIn, gridOut, P3DFFT_R2CFFT_D, dim, 0);

Here gridIn and gridOut are pointers to the C equivalent of P3DFFT++ DataGrid object (initial and final),
trans_f is the handle for the 1D transform after it has been initialized and planned, dim is the logical dimension of
the transform (0, 1, or 2), and the last argument indicates that this is not an in-place transform (a non-zero argument
would indicate in-place). This initialization/planning needs to be done once per transform type.

p3dfft_exec_1Dtrans_double(trans_f,IN,OUT);

This statement executes the 1D transformed planned and handled by trans_f. IN and OUT are pointers to one-
dimensional input and output arrays containing the 3D grid stored contiguously in memory based on the local grid
dimensions and storage order of gridIn and gridOut. The execution can be performed many times with the same
handle and same or different input and output arrays. In case of out-of-place transform the input and output arrays
must be non-overlapping.
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Fortran

Here is an example of initializing and executing a 1D transform (again, a real-to-complex double precision FFT) in a
Fortran program:

integer(C_INT) gridIn,gridOut
integer trans_f

gridIn = p3dfft_init_grid(ldimsIn, glob_startIn, gdimsIn, pgrid, dmapIn, mem_orderIn)
gridOut = p3dfft_init_grid(ldimsOut, glob_startOut, gdimsOut, pgrid, dmapOut, mem_
→˓orderOut)
trans_f = p3dfft_plan_1Dtrans_f(gridIn, gridOut, P3DFFT_R2CFFT_D, dim-1, 0)

These statement set up initial and final grids (gridIn and gridOut), initialize and plan the 1D real-to-complex
double FFT and use trans_f as its handle. This needs to be done once per transform type. Note that we need to
translate the transform dimension dim into C convention (so that X corresponds to 0, Y to 1 and Z to 2). The last
argument is 0 for out-of-place and non-zero for in-place transform.

call p3dfft_1Dtrans_double(trans_f,Gin,Gout)

This statement executes the 1D transform planned before and handled by trans_f. Gin and Gout are 1D contiguous
arrays of values (double precision and double complex) of the 3D grid array, according to the local grid dimensions
and memory storage order of gridIn and gridOut, respectively. After the previous planning step is complete,
the execution can be called many times with the same handle and same or different input and output arrays. If the
transform was declared as out-of-place then Gin and Gout must be non-overlapping.

7.1.6 Three-dimensional Transforms

As mentioned above, three-dimensional (3D) transforms consist of three one-dimensional transforms in sequence (one
for each dimension), interspersed by inter-processor transposes. In order to specify a 3D transform, five main things
are needed:

1. Initial DataGrid (as described above, DataGrid object defines all of the specifics of grid dimensions, mem-
ory ordering and distribution among processors).

2. Final DataGrid.

3. The type of 3D transform.

4. Whether this is in-place transform

5. Whether this transform can overwrite input

The final DataGrid may or may not be the same as the initial DataGrid. First, in real-to-complex and complex-
to-real transforms the global grid dimensions change for example from (n0, n1, n2) to (n0/2+1, n1, n2), since most
applications attempt to save memory by using the conjugate symmetry of the Fourier transform of real data. Secondly,
the final DataGrid may have different processor distribution and memory ordering, since for example many applica-
tions with convolution and those solving partial differential equations do not need the initial DataGrid configuration
in Fourier space. The flow of these applications is typically 1) transform from physical to Fourier space, 2) apply
convolution or derivative calculation in Fourier space, and 3) inverse FFT to physical space. Since forward FFT’s last
step is 1D FFT in the third dimension, it is more efficient to leave this dimension local and stride-1, and since the first
step of the inverse FFT is to start with the third dimension 1D FFT, this format naturally fits the algorithm and results
in big savings of time due to elimination of several extra transposes.

In order to define the 3D transform type one needs to know three 1D transform types comprising the 3D transform.
Usage of 3D transforms is different depending on the language used and is described below.
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C++

In C++ 3D transform type is interfaced through a class trans_type3D, which is constructed as in the following
example:

trans_type3D name_type3D(int types1D[3]);

Here types1D is the array of three 1D transform types which define the 3D transform (empty transforms are permitted).
Copy constructor is also provided for this class.

For example:

int type_rcc, type_ids[3];

type_ids[0] = P3DFFT_R2CFFT_D;
type_ids[1] = P3DFFT_CFFT_FORWARD_D;
type_ids[2] = P3DFFT_CFFT_FORWARD_D;

trans_type3D mytype3D(type_ids);

3D transforms are provided as the class template:

template<class TypeIn,class TypeOut> class transform3D;

Here TypeIn and TypeOut are initial and final data types. Most of the times these will be the same, however some
transforms have different types on input and output, for example real-to-complex FFT. In all cases the floating point
precision (single/double) of the initial and final types should match.

The constructor of transform3D takes the following arguments:

transform3D<TypeIn,TypeOut> my_transform_name(gridIn,gridOut,type,inplace,overwrite);

Here type is a 3D transform type (constructed as shown above), inplace is a bool variable indicating whether this is
an in-place transform, and overwrites (also boolean) defines if the input can be rewritten (default is false). gridIn and
gridOut are initial and final DataGrid objects. Calling a transform3D constructor creates a detailed step-by-step
plan for execution of the 3D transform and stores it in the my_transform_name object.

Once a 3D transform has been defined and planned, execution of a 3D transform can be done by calling:

my_transform_name.exec(TypeIn *in,TypeOut *out);

Here in and out are initial and final data arrays of appropriate types. These are assumed to be one-dimensional
contiguous arrays containing the three-dimensional grid for input and output, local to the memory of the given MPI
task, and stored according to the dimensions and memory ordering specified in the gridIn and gridOut objects,
respectively. For example, if grid1.ldims={2,2,4} and grid1.mem_order={2,1,0}, then the in array
will contain the following sequence: G000, G001, G002, G003, G010, G011, G012, G013, G100, G101, G102, G103,
G110, G111, G112, G113. Again, we follow the Fortran convention that the fastest running index is the first, (i.e.
G012 means the grid element at X=0, Y=1, Z=2).

C

In C a unique datatype Type3D is used to define the 3D transform needed. p3dfft_init_3Dtype function is
used to initialize a new 3D transform type, based on the three 1D transform types, as in the following example:

int type_rcc, type_ids[3];

(continues on next page)
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type_ids[0] = P3DFFT_R2CFFT_D;
type_ids[1] = P3DFFT_CFFT_FORWARD_D;
type_ids[2] = P3DFFT_CFFT_FORWARD_D;

type_rcc = p3dfft_init_3Dtype(type_ids);

In this example type_rcc will describe the real-to-complex (R2C) 3D transform (R2C in 1D followed by two
complex 1D transforms).

To define and plan the 3D transform, use p3dfft_plan_3Dtrans function as follows:

int mytrans;

mytrans = p3dfft_plan_3Dtrans(gridIn,gridOut,type,inplace,overwrite);

Here gridIn and gridOut are pointers to initial and final DataGrid objects (of type Grid); type is the 3D transform
type defined as above; inplace is an integer indicating an in-place transform if it’s non-zero, out-of-place otherwise.
overwrite is an integer defining if the input can be overwritten (non-zero; default is zero). In this example mytrans
contains the handle to the 3D transform that can be executed (many times) as follows:

p3dfft_exec_3Dtrans_double(mytrans,in,out);

Here in and out are pointers to input and output arrays, as before, assumed to be the local portion of the 3D grid array
stored according to gridIn and gridOut descriptors. For single precision use p3dfft_exec_3Dtrans_single.

Fortran

In Fortran, similar to C, to define a 3D transform the following routine is used:

mytrans = p3dfft_plan_3Dtrans_f(gridIn,gridOut,type,inplace, overwrite)

Here gridIn and gridOut are handles defining the initial and final DataGrid configurations; type is the 3D transform
type, defined as above; and inplace is the integer whose non-zero value indicates this is an in-place transform (or 0 for
out-of-place). Non-zero overwrite indicates it is OK to overwrite input (default is no). Again, this planner routine is
called once per transform. Execution can be called multiple times as follows:

call p3dfft_3Dtrans_double(mytrans,IN,OUT)

Here IN and OUT are the input and output arrays. For single precision use p3dfft_3Dtrans_single_f.

7.2 P3DFFT++ C++ Reference
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* grid constructor

– P3DFFT++ Transforms

* One-Dimensional (1D) Transforms

· Custom transform types

· Planning 1D transform

· Releasing 1D transform handle

· Executing 1D transform

* Three-dimensional Transforms

· trans_type3D constructor

· Transform3D constructor

· Transform3D Execution

· Spectral Derivative for 3D array

7.2.1 Introduction

For C++ users all P3DFFT++ objects are defined within the p3dfft namespace, in order to avoid confusion with
user-defined objects. For example, to initialize P3DFFT++ it is necessary to call the function p3dfft::setup(),
and to exit P3DFFT++ one should call p3dfft::cleanup() (alternatively, one can use namespace p3dfft and
call setup() and cleanup()). From here on in this document we will omit the implicit p3dfft:: prefix from
all C++ names.

7.2.2 Setup and Grid layout

ProcGrid constructor

The public portion of the ProcGrid class is below:

class ProcGrid {

public:
int taskid,numtasks;
int nd; //number of dimensions the volume is split over
int ProcDims[3]; //Processor grid size (in inverse order of split dimensions\

, i.e. rows first, then columns etc
int grid_id_cart[3];
MPI_Comm mpi_comm_glob; // Global MPi communicator we are starting from
MPI_Comm mpi_comm_cart;
MPI_Comm mpicomm[3]; //MPI communicators for each dimension

ProcGrid(int procdims[3],MPI_Comm mpi_comm_init);

DataGrid constructor

The public portion of the DataGrid class is below:
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class DataGrid {

...

public :

int nd; //number of dimensions the volume is split over

int Gdims[3]; //Global dimensions

dim_conj_sym; // dimension of the array in which a little less than half of the
→˓elements are omitted due to conjugate symmetry. This argument should be non-
→˓negative only for complex-valued arrays resulting from real-to-complex FFT in the
→˓given dimension.

int MemOrder[3]; //Memory ordering inside the data volume
int Ldims[3]; //Local dimensions on THIS processor
int Pdims[3]; // Dimensions of Processor grid (as mapped onto data dimensions)
int Dmap[3]; // Mapping of data dimensions onto processor dimensions
int D[3]; //Ranks of Dimensions of physical grid split over rows and columns

→˓correspondingly
int L[3]; //Rank of Local dimension (p=1)
ProcGrid *Pgrid;
int grid_id[3]; //Position of this pencil/cube in the processor grid
int GlobStart[3]; // Starting coords of this cube in the global grid
// int (*st)[3],(*sz)[3],(*en)[3]; // Lowest, size and uppermost location in 3D,

→˓for each processor in subcommunicator
int **st[3],**sz[3],**en[3]; // Lowest, size and uppermost location in 3D, for

→˓each processor in subcommunicator

bool is_set;
DataGrid(int gdims_[3],ProcGrid *pgrid,int dmap[3],int mem_order[3]);
DataGrid(const DataGrid &rhs);
DataGrid() {};
~DataGrid();
void set_mo(int mo[3]) {for(int i=0;i<3;i++) mem_order[i] = mo[i];};

...
};

grid constructor

DataGrid::DataGrid(int gdims[3],int dim_conj_sym,ProcGrid *pgrid,int dmap[3],int mem_
→˓order[3])

Function: Initializes a new DataGrid with specified parameters.
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Ar-
gu-
ment

Description

gdims Three global grid dimensions (logical order - X, Y, Z)
dim_conj_symDimension of conjugate symmetry, non-negative only for complex arrays resulting from real-to-complex

FFT in the given dimension. This is logical, not storage, dimension, with valid numbers 0 - 2, and -1
implying no conjugate symmetry.

pgrid A pointer to a processor grid this data grid is living on.
dmap A permutation of the 3 integers: 0, 1 and 2. Specifies mapping of data dimensions onto processor grid

dimensions. For example, dmap=(1,0,2) implies second data dimension being spanned by the first processor
grid dimension, first data dimension being spanned by the second processor grid dimension, and the third
data dimension is mapped onto third processor dimension.

mem_orderA permutation of the 3 integers: 0, 1 and 2. Specifies mapping of the logical dimension and memory
storage dimensions for local memory for each MPI task. mem_order[i0] = 0 means that the i0’s
logical dimension is stored with stride=1 in memory. Similarly, mem_order[i1] = 1 means that
i1’s logical dimension is stored with stride=ldims[i0] etc

mpi-
comm

The MPI communicator in which this DataGrid lives

7.2.3 P3DFFT++ Transforms

P3DFFT++ functions in a way similar to FFTW: first the user needs to plan a transform, using a planner function
once per each transform type. The planner function initializes the transform, creates a plan and stores all information
relevant to this transform inside P3DFFT++. The users gets a handle referring to this plan (which is a class in C++)
that can be later used to execute this transform, and can be applied multiple times. The handles can be released after
use.

In order to define and plan a transform (whether 1D or 3D) one needs to first define initial and final DataGrid
objects. They contain all the necessary grid decomposition parameters. P3DFFT++ figures out the optimal way to
transpose the data between these two grid configurations, assuming they are consistent (i.e. same grid size, number of
tasks etc).

One-Dimensional (1D) Transforms

The following predefined 1D transforms are available:
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Transform Description
EMPTY_TYPE Empty transform.
R2CFFT_S,
P3DFFT_R2CFFT_D

Real-to-complex forward FFT (as defined in FFTW manual), in single and double preci-
sion respectively.

C2RFFT_S,
P3DFFT_C2RFFT_D

Complex-to-real backward FFT (as defined in FFTW manual), in single and double pre-
cision respectively.

CFFT_FORWARD_S,
CFFT_FORWARD_D

Complex forward FFT (as defined in FFTW manual), in single and double precision
respectively.

CFFT_BACKWARD_S,
CFFT_BACKWARD_D

Complex backward FFT (as defined in FFTW manual), in single and double precision
respectively.

DCT<x>_REAL_S,
DCT1_REAL_D

Cosine transform for real-numbered data, in single and double precision, where <x>
stands for the variant of the cosine transform, such as DCT1, DCT2, DCT3, or DCT4.

DST<x>_REAL_S,
DST1_REAL_D

Sine transform for real-numbered data, in single and double precision, where <x> stands
for the variant of the cosine transform, such as DST1, DST2, DST3, or DST4.

DCT<x>_COMPLEX_S,
DCT1_COMPLEX_D

Cosine transform for complex-numbered data, in single and double precision, where <x>
stands for the variant of the cosine transform, such as DCT1, DCT2, DCT3, or DCT4.

DST<x>_COMPLEX_S,
DST1_COMPLEX_D

Sine transform for complex-numbered data, in single and double precision, where <x>
stands for the variant of the cosine transform, such as DST1, DST2, DST3, or DST4.

Custom transform types

Custom 1D transforms can be defined by the user through trans_type1D class template.

template <class Type1,class Type2> class trans_type1D : public gen_trans_type{

int ID;

public :

typedef long (*doplan_type)(const int *n,int howmany,Type1 *in,const int *inembed,
→˓int istride,int idist,Type2 *out,const int *onembed,int ostride,int odist,...);

long (*doplan)(...);
void (*exec)(...);

trans_type1D(const char *name, long (*doplan_)(...),void (*exec)(...)=NULL,int
→˓isign=0);

inline int getID() {return(ID);}
trans_type1D(const trans_type1D &rhs);
~trans_type1D();

};

This class template is a derivative of gen_trans_type1D class, defined as follows:

class gen_trans_type {
public :
char *name;
int isign; // forward (-1) or backward (+1), in case this is complex FFT
bool is_set,is_empty;
int dt1,dt2; //Datatype before and after
int prec; // precision for a real value in bytes (4 or 8)
gen_trans_type(const char *name_,int isign_=0);
~gen_trans_type();

(continues on next page)
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(continued from previous page)

bool operator==(const gen_trans_type &) const;
};

In order to define a custom transform type, the user needs to provide planning and execution functions (doplan and
exec). For example, in case of a complex FFT implemented through FFTW, the following is how the transform type
is constructed:

char *name = "Complex-to-complex Fourier Transform, forward transform, double
→˓precision";
int isign = FFTW_FORWARD;
trans_type1D<complex_double,complex_double> *mytype = new trans_type1D<complex_double,
→˓complex_double>(name,(long (*)(...) ) fftw_plan_many_dft,(void (*)(...)) exec_c2c_d,
→˓isign);

where exec_c2c_d is defined as follows:

void exec_c2c_d(long plan,complex_double *in,complex_double *out)
{

fftw_execute_dft((fftw_plan) plan,(fftw_complex *) in,(fftw_complex *) out);
}

Planning 1D transform

1D transform in C++ is realized through transplan template class. TypeIn and TypeOut are the datatypes for
input and output.

Two constructors are provided.

template <class TypeIn,class TypeOut> class transplan::transplan(const grid &gridIn,
→˓const grid &gridOut,const gen_trans_type *type,const int d, const bool inplace_);

template <class TypeIn,class TypeOut> class transplan::transplan(const grid &gridIn,
→˓const grid &gridOut,const int type,const int d, const bool inplace_);

Function: Defines and plans a 1D transform of a 3D array.

Ar-
gu-
ment

Description

gridIn Initial DataGrid descriptor
grid-
Out

Final DataGrid descriptor

type The type of the 1D transform (either as a predefined integer parameter, or as a class gen_trans_type.
d The dimension to be transformed. Note that this is the logical dimension rank (0 for X, 1 for Y, 2 for Z),

and may not be the same as the storage dimension, which depends on mem_order member of gridIn and
gridOut. The transform dimension of the DataGrid is assumed to be MPI task-local.

in-
place

True for in-place transform, false for out-of-place.

Releasing 1D transform handle

To release a 1D transform handle, simply delete the corresponding transplan class.
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Executing 1D transform

template <class TypeIn,class TypeOut> class transplan::exec(char *In, char *Out);

Function: Executes the pre-planned 1D transform of a 3D array.

Ar-
gu-
ment

Description

In,
Out

Pointers to input and output arrays, cast as pointer to char. They contain the local portion of the 3D
input and output arrays, arranged as a contiguous sequence of numbers according to local grid dimensions
and the memory order of initial and final DataGrid objects respectively.

Note: If the transform is out-of-place, then these arrays must be non-overlapping. The execution can be performed
many times with the same handle and same or different input and output arrays.

Three-dimensional Transforms

Three-dimensional (3D) transforms consist of three one-dimensional transforms in sequence (one for each dimension),
interspersed by inter-processor transposes. In order to specify a 3D transform, three main things are needed:

1. Initial DataGrid (as described above, DataGrid object defines all of the specifics of grid dimensions, mem-
ory ordering and distribution among processors).

2. Final DataGrid.

3. The type of 3D transform.

The final DataGrid may or may not be the same as the initial DataGrid. First, in real-to-complex and complex-
to-real transforms the global grid dimensions change for example from (n0, n1, n2) to (n0/2+1 ,n1, n2), since most
applications attempt to save memory by using the conjugate symmetry of the Fourier transform of real data. Secondly,
the final DataGrid may have different processor distribution and memory ordering, since for example many applica-
tions with convolution and those solving partial differential equations do not need the initial DataGrid configuration
in Fourier space. The flow of these applications is typically 1) transform from physical to Fourier space, 2) apply
convolution or derivative calculation in Fourier space, and 3) inverse FFT to physical space. Since forward FFT’s last
step is 1D FFT in the third dimension, it is more efficient to leave this dimension local and stride-1, and since the first
step of the inverse FFT is to start with the third dimension 1D FFT, this format naturally fits the algorithm and results
in big savings of time due to elimination of several extra transposes.

In order to define the 3D transform type one needs to know three 1D transform types comprising the 3D transform. In
C++ 3D transform type is interfaced through a class trans_type3D.

trans_type3D constructor

Two constructors are provided for trans_type3D (in addition to a copy constructor):

trans_type3D::trans_type3D(const gen_trans_type *types_[3]);
trans_type3D::trans_type3D(const int types[3]);

Types is an array of 3 1D transform types, either as integer type IDs, or gen_trans_type classes.

trans_type3D class has the following public members:
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char *name;
int dtIn,dtOut; // Datatypes for input and output: 1 is real, 2 is complex
int prec; // Datatype precision for a real value in bytes: 4 for single, 8 for double
→˓precision

bool is_set;
int types[3]; // 3 1D transform types

Transform3D constructor

In C++ 3D transforms are handled through class template transform3D, with input and output datatypes TypeIn
and TypeOut. Often these will be the same, however some transforms have different types on input and output, for
example real-to-complex FFT. In all cases the floating point precision (single/double) of the initial and final types
should match.

template<class TypeIn,class TypeOut> class transform3D::transform3D( const grid &grid_
→˓in, const grid &grid_out, const trans_type3D *type, const bool inplace, const bool
→˓Overwrite);

Function: Defines and plans a 3D transform.

Argument Description
gridIn Initial DataGrid configuration
gridOut Final DataGrid configuration
type pointer to a 3D transform type class
inplace true is this is an in-place transform; false if an out-of-place transform.
Overwrite (optional) Indicates whether input can be overwritten (true = yes, default is no)

Transform3D Execution

template<class TypeIn,class TypeOut> class transform3D::exec(TypeIn *In,TypeOut *Out);

Function: Executes a 3D transform.

Argu-
ment

Description

In,
Out

Pointers to input and output arrays. In case of in-place transform they can point to the same location. For
out-of-place transforms the arrays must be non-overlapping.

Spectral Derivative for 3D array

template<class TypeIn,class TypeOut> class transform3D::exec_deriv(TypeIn *In,TypeOut
→˓*Out, int idir);

Function: Executes 3D real-to-complex FFT, followed by spectral derivative calculation, i.e. multiplication by (ik),
where i is the complex imaginary unit, and k is the wavenumber. This function is defined only for complex-valued
output arrays (single or double precision), i.e. TypeOut must be either mycomplex or complex_double.
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Argu-
ment

Description

In,
Out

Pointers to input and output arrays, assumed to be the local portion of the 3D grid array stored contigu-
ously in memory, consistent with definition of grids in planning stage.

idir The dimension where derivative is to be taken in (this is logical dimension, NOT storage mapped). Valid
values are 0 - 2.

Note:

1) Unless inplace was defined in the planning stage of mytrans, In and Out must be non-overlapping

2) This function can be used multiple times after the 3D transform has been defined and planned.

7.3 P3DFFT++ C Reference

Contents

• P3DFFT++ C Reference

– Setup and Grid Layout

* p3dfft_setup

* p3dfft_cleanup

* p3dfft_init_proc_grid

* p3dfft_init_data_grid

* p3dfft_free_proc_grid

– One-dimensional transforms

* 1D transform planning

* 1D transform execution

– Three-dimensional Transforms

* p3dfft_init_3Dtype

* 3D transform planning

* 3D Transform Execution

* 3D Spectral Derivative

7.3.1 Setup and Grid Layout

p3dfft_setup

void p3dfft_setup()

Function: Called once in the beginning of use to initialize P3DFFT++.
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p3dfft_cleanup

void p3dfft_cleanup()

Function: Called once before exit and after the use to free up P3DFFT++ structures.

p3dfft_init_proc_grid

int p3dfft_init_proc_grid(int pdims[3],MPI_Comm mpicomm)

Function: Initializes a new grid with specified parameters.

Ar-
gu-
ment

Description

pdims The dimensions of the 3D processor grid. Value of 1 implies the corresponding dimension is local. These
are stored in Fortran (row-major) order, i.e. adjacent MPI tasks are mapped onto the lowest index of the
processor grid.

mpi-
comm

The MPI communicator this processor grid is living on. The library makes it own copy of the communica-
tor, in order to avoid interference with the user program communication.

p3dfft_init_data_grid

Grid *p3dfft_init_data_grid(int gdims[3],int dim_conj_sym,int pgrid,int dmap[3],int
→˓mem_order[3])

Function: Initializes a new data grid with specified parameters.

Ar-
gu-
ment

Description

gdims Three global grid dimensions (logical order - X, Y, Z).
dim_conj_symDimension of the array in which a little less than half of the elements are omitted due to conjugate symmetry.

This argument should be non-negative only for complex-valued arrays resulting from real-to-complex FFT
in the given dimension.

pgrid The processor grid ID, on which this data grid is living on.
dmap A permutation of the 3 integers: 0, 1 and 2. Specifies mapping of data dimensions onto processor grid

dimensions. For example, dmap=(1,0,2) implies second data dimension being spanned by the first processor
grid dimension, first data dimension being spanned by the second processor grid dimension, and the third
data dimension is mapped onto third processor dimension.

mem_orderA permutation of the 3 integers: 0, 1 and 2. Specifies mapping of the logical dimension and memory
storage dimensions for local memory for each MPI task. mem_order[i0] = 0 means that the i0’s
logical dimension is stored with stride=1 in memory. Similarly, mem_order[i1] = 1 means that
i1’s logical dimension is stored with stride=ldims[i0] etc.

Return value: A pointer to the newly initialized DataGrid structure that can later be used for grid operations and to
get information about the grid.

The DataGrid structure is defined as follows:
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struct Grid_struct {
int nd; //number of dimensions the volume is split over
int Gdims[3]; //Global dimensions

int dim_conj_sym; // Dimension of conjugate symmetry where we store N/2+1 of the
→˓data after Real-to-complex transform due to conjugate symmety;(-1 for none)

int MemOrder[3]; //Memory ordering inside the data volume
int Ldims[3]; //Local dimensions on THIS processor
int pgrid; //Processor grid
int dmapr[3]; //Mapping of the data grid dimensions onto processor grid
int D[3]; //Ranks of Dimensions of physical grid split over rows and columns

→˓correspondingly
int L[3]; //Rank of Local dimension (p=1)
int grid_id[3]; //Position of this pencil/cube in the processor grid
int ProcDims[3]; // Processor grid dimensions, as mapped onto data dimensions

int GlobStart[3]; // Starting coords of this cube in the global grid
} ;
typedef struct Grid_struct Grid;

p3dfft_free_proc_grid

void p3dfft_free_proc_grid(int pgrid)

Function: Frees up a processor grid, specified by its handle.

Argument Description
pgrid Handle of the ProcGrid structure to be freed.

p3dfft_free_grid

void p3dfft_free_data_grid(Grid *gr)

Function: Frees up a data grid.

Argument Description
gr pointer to DataGrid structure.

7.3.2 One-dimensional transforms

1D transforms can be done with or without data exchange and/or memory reordering. In general, combining a trans-
form with an exchange/reordering can be beneficial for performance due to cache reuse, compared to two separate
calls to a transform and an exchange.

The following predefined 1D transforms are available:
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Transform Description
P3DFFT_EMPTY_TYPE Empty transform.
P3DFFT_R2CFFT_S,
P3DFFT_R2CFFT_D

Real-to-complex forward FFT (as defined in FFTW manual), in single and dou-
ble precision respectively.

P3DFFT_C2RFFT_S,
P3DFFT_C2RFFT_D

Complex-to-real backward FFT (as defined in FFTW manual), in single and dou-
ble precision respectively.

P3DFFT_CFFT_FORWARD_S,
P3DFFT_CFFT_FORWARD_D

Complex forward FFT (as defined in FFTW manual), in single and double preci-
sion respectively.

P3DFFT_CFFT_BACKWARD_S,
P3DFFT_CFFT_BACKWARD_D

Complex backward FFT (as defined in FFTW manual), in single and double
precision respectively.

P3DFFT_DCT<x>_REAL_S,
P3DFFT_DCT1_REAL_D

Cosine transform for real-numbered data, in single and double precision, where
<x> stands for the variant of the cosine transform, such as DCT1, DCT2, DCT3,
or DCT4.

P3DFFT_DST<x>_REAL_S,
P3DFFT_DST1_REAL_D

Sine transform for real-numbered data, in single and double precision, where
<x> stands for the variant of the cosine transform, such as DST1, DST2, DST3,
or DST4.

P3DFFT_DCT<x>_COMPLEX_S,
P3DFFT_DCT1_COMPLEX_D

Cosine transform for complex-numbered data, in single and double precision,
where <x> stands for the variant of the cosine transform, such as DCT1, DCT2,
DCT3, or DCT4.

P3DFFT_DST<x>_COMPLEX_S,
P3DFFT_DST1_COMPLEX_D

Sine transform for complex-numbered data, in single and double precision,
where <x> stands for the variant of the cosine transform, such as DST1, DST2,
DST3, or DST4.

1D transform planning

int p3dfft_plan_1Dtrans(Grid *gridIn, Grid *gridOut, int type1D, int dim, int inplace)

Function: Defines and plans a 1D transform of a 3D array. This planning stage must precede execution of 3D
transform.

Ar-
gu-
ment

Description

gridIn,
grid-
Out

Pointers to the C equivalent of P3DFFT++ DataGrid object (initial and final)

dim The logical dimension of the transform (0, 1 or 2). Note that this is the logical dimension rank (0 for
X, 1 for Y, 2 for Z), and may not be the same as the storage dimension, which depends on mem_order
member of gridIn and gridOut. The transform dimension of the grid is assumed to be MPI task-local.

in-
place

Indicates that this is not an in-place transform (a non-zero argument would indicate in-place).

Return value: The function returns a handle for the transform that can be used in other function calls.

Note: This initialization/planning needs to be done once per transform type.
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1D transform execution

void p3dfft_exec_1Dtrans_double(int mytrans, double *IN, double *OUT)

void p3dfft_exec_1Dtrans_single(int mytrans, float *IN, float *OUT)

Function: Executes double or single precision 1D transform, respectively, of a 3D array

Argu-
ment

Description

my-
trans

The handle for the 1D transform.

IN,
OUT

Pointers to one-dimensional input and output arrays containing the 3D grid stored contiguously in memory
based on the local grid dimensions and storage order of gridIn and gridOut.

Note:

1) The execution can be performed many times with the same handle and same or different input and output arrays.

2) In case of out-of-place transform the input and output arrays must be non-overlapping.

3) Both input and output arrays must be local in the dimension of transform

7.3.3 Three-dimensional Transforms

p3dfft_init_3Dtype

int p3dfft_init_3Dtype(int type_ids[3])

Function: Defines a 3D transform type.

Argument Description
type_ids An array of three 1D transform types.

Return value: A handle for 3D transform type.

Example:

int type_rcc, type_ids[3];

type_ids[0] = P3DFFT_R2CFFT_D;
type_ids[1] = P3DFFT_CFFT_FORWARD_D;
type_ids[2] = P3DFFT_CFFT_FORWARD_D;

type_rcc = p3dfft_init_3Dtype(type_ids);

In this example type_rcc will describe the real-to-complex (R2C) 3D transform (R2C in 1D followed by two
complex 1D transforms).

7.3. P3DFFT++ C Reference 47



P3DFFT++ Documentation, Release 3.0.0

3D transform planning

int p3dfft_plan_3Dtrans(Grid *gridIn, Grid *gridOut, int type3D, int inplace, int
→˓overwrite)

Function: Plans a 3D transform. This planning stage must precede execution of 3D transform.

Argument Description
gridIn, gridOut Pointers to initial and final DataGrid objects
type3D The 3D transform type defined as above
inplace An integer indicating an in-place transform if it’s non-zero, out-of-place otherwise.
overwrite (optional) Non-zero when it is OK to overwrite the input array (optional argument, default is 0)

Return value: The function returns an integer handle to the 3D transform that can be called multiple times by an
execute function.

Note:

1) This initialization/planning needs to be done once per transform type.

2) The final grid may or may not be the same as the initial grid. First, in real-to-complex and complex-to-real trans-
forms the global grid dimensions change for example from (n0,n1,n2) to (n0/2+1,n1,n2), since most applications
attempt to save memory by using the conjugate symmetry of the Fourier transform of real data. Secondly, the
final grid may have different processor distribution and memory ordering, since for example many applications
with convolution and those solving partial differential equations do not need the initial grid configuration in
Fourier space. The flow of these applications is typically 1) transform from physical to Fourier space, 2) apply
convolution or derivative calculation in Fourier space, and 3) inverse FFT to physical space. Since forward
FFT’s last step is 1D FFT in the third dimension, it is more efficient to leave this dimension local and stride-1,
and since the first step of the inverse FFT is to start with the third dimension 1D FFT, this format naturally fits
the algorithm and results in big savings of time due to elimination of several extra transposes.

3D Transform Execution

void p3dfft_exec_3Dtrans_single(int mytrans, float *In, float *Out)

void p3dfft_exec_3Dtrans_double(int mytrans, double *In, double *Out)

Function: Execute 3D transform in single or double precision, respectively.

Argu-
ment

Description

In,
Out

Pointers to input and output arrays, assumed to be the local portion of the 3D grid array, stored contigu-
ously in memory, consistent with definition of DataGrid in planning stage.

Note:

1) Unless inplace was defined in the planning stage of mytrans, In and Out must be non-overlapping

2) These functions can be used multiple times after the 3D transform has been defined and planned.
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3D Spectral Derivative

void p3dfft_exec_3Dtrans_single(int mytrans, float *In, float *Out, int idir)

void p3dfft_exec_3Dtrans_double(int mytrans, double *In, double *Out, int idir)

Function: Execute 3D real-to-complex FFT, followed by spectral derivative calculation, i.e. multiplication by (ik),
where i is the complex imaginary unit, and k is the wavenumber; in single or double precision, respectively.

Argu-
ment

Description

In,
Out

Pointers to input and output arrays, assumed to be the local portion of the 3D grid array stored contigu-
ously in memory, consistent with definition of DataGrid in planning stage.

idir The dimension where derivative is to be taken in (this is logical dimension, NOT storage mapped). Valid
values are 0 - 2.

Note:

1) Unless inplace was defined in the planning stage of mytrans, In and Out must be non-overlapping

2) These functions can be used multiple times after the 3D transform has been defined and planned.

7.4 P3DFFT++ Fortran Reference

Contents

• P3DFFT++ Fortran Reference

– Setup and Grid Layout

* p3dfft_setup

* p3dfft_cleanup

* p3dfft_init_proc_grid

* p3dfft_free_data_grid

– One-dimensional (1D) Transforms

* 1D transform planning

* 1D transform execution

– Three-dimensional transforms

* 3D transform planning

* 3D transform execution

* 3D Spectral Derivative
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7.4.1 Setup and Grid Layout

In Fortran grid structures are hidden and is operated on by integer handles.

p3dfft_setup

subroutine p3dfft_setup

Function: Called once in the beginning of use to initialize P3DFFT++.

p3dfft_cleanup

subroutine p3dfft_cleanup

Function: Called once before exit and after the use to free up P3DFFT++ structures.

p3dfft_init_proc_grid

function p3dfft_init_proc_grid(integer pdims(3),integer mpicomm)

integer(C_INT) p3dfft_proc_data_grid

Function: Initializes a new processor grid with specified parameters.

Ar-
gu-
ment

Description

pdims The dimensions of the 3D processor grid. Value of 1 implies the corresponding dimension is local. These
are stored in Fortran (row-major) order, i.e. adjacent MPI tasks are mapped onto the lowest index of the
processor grid.

mpi-
comm

The MPI communicator this processor grid is living on. The library makes it own copy of the communica-
tor, in order to avoid interference with the user program communication.

Return value: An integer handle of the initialized processor grid, to be used later by various routines accessing the
grid.

p3dfft_init_data_grid

function p3dfft_init_data_grid(ldims, glob_start, gdims, dim_conj_sym, pgrid, dmap, mem_order)

integer(C_INT) p3dfft_init_data_grid

Function: Initializes a new data grid. Returns handle of the initialized data grid.
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Table 1: IN
Argu-
ment

Description

inte-
ger
gdims(3)

Three global grid dimensions (logical order - X, Y, Z).

inte-
ger
dim_conj_sym

Dimension of the array in which a little less than half of the elements are omitted due to conjugate
symmetry. This argument should be non-negative only for complex-valued arrays resulting from real-
to-complex FFT in the given dimension.

inte-
ger
pgrid

Processor grid handle

inte-
ger
dmap(3)

A permutation of the 3 integers: 0, 1 and 2. Specifies the mapping of data grid onto processor grid.
For example, dmap=(1,0,2) implies second data dimension being spanned by the first processor grid di-
mension, first data dimension being spanned by the second processor grid dimension, and the third data
dimension is mapped onto third processor dimension.

inte-
ger
mem_order(3)

A permutation of the 3 integers: 0, 1 and 2. Specifies mapping of the logical dimension and memory
storage dimensions for local memory for each MPI task. mem_order(i0) = 0 means that the i0’s
logical dimension is stored with stride=1 in memory. Similarly, mem_order(i1) = 1 means that
i1’s logical dimension is stored with stride=ldims(i0) etc.

Table 2: OUT
Argument Description
integer
ldims(3)

Local dimensions of the grid for each MPI tasks, in order of logical dimensions numbering
(XYZ). Essentially ldims = gdims / pgrid.

integer
glob_start(3)

Starting coordinates of the local portion of the grid within the global grid.

Return value: An integer handle of the initialized grid, to be used later by various routines accessing the grid.

p3dfft_free_data_grid

subroutine p3dfft_free_data_grid(grid)

Function: Frees the data grid specified by its handle.

Table 3: IN
Argument Description
integer(C_INT) grid The handle of the data grid to be freed.

p3dfft_free_proc_grid

subroutine p3dfft_free_proc_grid(Pgrid)

Function: Frees the processor grid specified by its handle.

Table 4: IN
Argument Description
integer(C_INT) Pgrid The handle of the processor grid to be freed.
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7.4.2 One-dimensional (1D) Transforms

The following predefined 1D transforms are available:

Transform Description
P3DFFT_EMPTY_TYPE Empty transform.
P3DFFT_R2CFFT_S,
P3DFFT_R2CFFT_D

Real-to-complex forward FFT (as defined in FFTW manual), in single and dou-
ble precision respectively.

3DFFT_C2RFFT_S,
3DFFT_C2RFFT_D

Complex-to-real backward FFT (as defined in FFTW manual), in single and dou-
ble precision respectively.

3DFFT_CFFT_FORWARD_S,
3DFFT_CFFT_FORWARD_D

Complex forward FFT (as defined in FFTW manual), in single and double preci-
sion respectively.

3DFFT_CFFT_BACKWARD_S,
3DFFT_CFFT_BACKWARD_D

Complex backward FFT (as defined in FFTW manual), in single and double
precision respectively.

3DFFT_DCT<x>_REAL_S,
3DFFT_DCT1_REAL_D

Cosine transform for real-numbered data, in single and double precision, where
<x> stands for the variant of the cosine transform, such as DCT1, DCT2, DCT3,
or DCT4.

P3DFFT_DST<x>_REAL_S,
P3DFFT_DST1_REAL_D

Sine transform for real-numbered data, in single and double precision, where
<x> stands for the variant of the cosine transform, such as DST1, DST2, DST3,
or DST4.

P3DFFT_DCT<x>_COMPLEX_S,
P3DFFT_DCT1_COMPLEX_D

Cosine transform for complex-numbered data, in single and double precision,
where <x> stands for the variant of the cosine transform, such as DCT1, DCT2,
DCT3, or DCT4.

P3DFFT_DST<x>_COMPLEX_S,
P3DFFT_DST1_COMPLEX_D

Sine transform for complex-numbered data, in single and double precision,
where <x> stands for the variant of the cosine transform, such as DST1, DST2,
DST3, or DST4.

1D transform planning

function p3dfft_plan_1Dtrans_f(gridIn, gridOut, type, dim, inplace)

integer p3dfft_plan_1Dtrans

Function: Defines and plans a 1D transform of a 3D array in a given dimension.
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Table 5: IN
Ar-
gu-
ment

Description

inte-
ger
gridIn

Initial data grid handle.

inte-
ger
grid-
Out

Destination data grid handle.

inte-
ger
type

1D transform type.

inte-
ger
dim

Dimension rank of the 3D array which should be transformed. valid values are 0, 1, or 2. Note that this is
the logical dimension rank (0 for X, 1 for Y, 2 for Z), and may not be the same as the storage dimension,
which depends on mem_order member of gridIn and gridOut. The transform dimension of the grid is
assumed to be MPI task-local.

inte-
ger
in-
place

Nonzero value if the transform is in-place.

1D transform execution

subroutine p3dfft_exec_1Dtrans_single(mytrans,in,out)

subroutine p3dfft_exec_1Dtrans_double(mytrans,in,out)

Function: Executes a 1D transform of a 3D array, in single or double precision.

Table 6: IN
Argument Description
mytrans The handle of a 1D transform predefined earlier with p3dfft_plan_1Dtrans.
in 3D array to be transformed
out Destination array (can be the same if inplace was nonzero when defining mytrans)

Note:

1) If inplace was not defined the input and output arrays must be non-overlapping.

2) This transform is done in the dimension specified in p3dfft_plan_1Dtrans, and this dimension should be
local for both input and output arrays.

3) This subroutine can be called multiple times with the same mytrans and same or different in/out.

7.4.3 Three-dimensional transforms
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3D transform planning

function p3dfft_plan_3Dtrans_f(gridIn,gridOut,type,inplace, overwrite)

integer p3dfft_plan_3Dtrans_f

Function: Defines and plans a 3D transform.

Argument Description
integer gridIn Initial data grid handle
integer gridOut Destination data grid handle
integer type(3) Three 1D transform types making up the desired 3D transform
integer inplace If nonzero, the transform takes place in-place
integer overwrite Nonzero if the input can be overwritten

Return value: A handle of the 3D transform

Note: The final grid may or may not be the same as the initial grid. First, in real-to-complex and complex-to-real
transforms the global grid dimensions change for example from (n0,n1,n2) to (n0/2+1,n1,n2), since most applications
attempt to save memory by using the conjugate symmetry of the Fourier transform of real data. Secondly, the final grid
may have different processor distribution and memory ordering, since for example many applications with convolution
and those solving partial differential equations do not need the initial grid configuration in Fourier space. The flow
of these applications is typically 1) transform from physical to Fourier space, 2) apply convolution or derivative
calculation in Fourier space, and 3) inverse FFT to physical space. Since forward FFT’s last step is 1D FFT in the third
dimension, it is more efficient to leave this dimension local and stride-1, and since the first step of the inverse FFT is
to start with the third dimension 1D FFT, this format naturally fits the algorithm and results in big savings of time due
to elimination of several extra transposes.

3D transform execution

subroutine p3dfft_exec_3Dtrans_single(mytrans,in,out)

subroutine p3dfft_exec_3Dtrans_double(mytrans,in,out)

Function: Executes a predefined 3D transform in single or double precision.

Argument Description
mytrans The handle of the predefined 3D transform
in Input array
out Output array

Note: This subroutine can be called multiple times for the same mytrans and same or different in/out.Input and
output arrays are local portions of the global 3D array, assumed to be stored contiguously in memory following the
definition of the grids in planning stage.

54 Chapter 7. P3DFFT++ Documentation



P3DFFT++ Documentation, Release 3.0.0

3D Spectral Derivative

p3dfft_exec_3Dtrans_single(mytrans, In, Out, idir)

p3dfft_exec_3Dtrans_double(mytrans, In, Out, idir)

Function: Execute 3D real-to-complex FFT, followed by spectral derivative calculation, i.e. multiplication by (ik),
where i is the complex imaginary unit, and k is the wavenumber; in single or double precision, respectively.

Argu-
ment

Description

In, Out Input and output arrays, assumed to be the local portion of the 3D grid array stored contiguously in
memory, consistent with definition of grid in planning stage.

integer
idir

The dimension where derivative is to be taken in (this is logical dimension, NOT storage mapped). Valid
values are 0 - 2.

Note:

1) Unless inplace was defined in the planning stage of mytrans, In and Out must be non-overlapping.

2) These functions can be used multiple times after the 3D transform has been defined and planned.
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7.5 P3DFFT++ C++ examples

Makefile.
user.
C++

An example Makefile showing how P3DFFT++ should be linked with a user’s code

test1D_cos.
C

This program exemplifies the use of 1D transforms in P3DFFT++, using cosine 1D transform (DCT-
1), for real-valued arrays. 1D transforms are performed on 3D arrays, in the dimension specified as an
argument. This could be an isolated 1D transform or a stage in a multidimensional transform. This
function can do local transposition, i.e. arbitrary input and output memory ordering. However it does not
do an inter-processor transpose (see test_transMPI for that).

test1D_cos_complex.
C

This program exemplifies the use of 1D transforms in P3DFFT++, using cosine 1D transform (DCT-1),
for complex-valued arrays. 1D transforms are performed on 3D arrays, in the dimension specified as
an argument. This could be an isolated 1D transform or a stage in a multidimensional transform. This
function can do local transposition, i.e. arbitrary input and output memory ordering. However it does not
do an inter-processor transpose (see test_transMPI for that).

test1D_sin.
C

This program exemplifies the use of 1D transforms in P3DFFT++, using cosine 1D transform (DST-
1), for real-valued arrays. 1D transforms are performed on 3D arrays, in the dimension specified as an
argument. This could be an isolated 1D transform or a stage in a multidimensional transform. This
function can do local transposition, i.e. arbitrary input and output memory ordering. However it does not
do an inter-processor transpose (see test_transMPI for that).

test3D_c2c.
C

This program exemplifies the use of P3DFFT++ for 3D complex-to-complex FFT using 2D domain de-
composition (1D is a specific case).

test3D_c2c_inplace.
C

This program exemplifies the use of P3DFFT++ for 3D complex-to-complex using 2D domain decom-
position (1D is a specific case). This is an in-place transform example (output overwrites input, which is
in the same array).

test3D_r2c.
C

This program exemplifies the use of P3DFFT++ for 3D real-to-complex and complex-to-real FFT using
2D domain decomposition (1D is a specific case).

test3D_r2c_single.
C

This program exemplifies the use of P3DFFT++ for 3D real-to-complex and complex-to-real FFT using
2D domain decomposition (1D is a specific case). This is a single precision version of test3D_r2c.C
example.

test_deriv.
C

This program exemplifies using P3DFFT++ library for taking a spectral derivative of a 3D array in a
given dimension.

test_transplan.
C

This program exemplifies the use of 1D transforms in P3DFFT++, using real-to-complex (R2C) 1D
transform. 1D transforms are performed on 3D arrays, in the dimension specified as an argument. This
could be an isolated 1D transform or a stage in a multidimensional transform. This function can do local
transposition, i.e. arbitrary input and output memory ordering. However it does not do an inter-processor
transpose (see test_transMPI for that).
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7.6 P3DFFT++ C examples

Makefile.
user.
C

An example Makefile showing how P3DFFT++ should be linked with a user’s code

test1D_cos.
c

This program exemplifies the use of 1D transforms in P3DFFT++, using cosine 1D transform (DCT-
1), for real-valued arrays. 1D transforms are performed on 3D arrays, in the dimension specified as an
argument. This could be an isolated 1D transform or a stage in a multidimensional transform. This
function can do local transposition, i.e. arbitrary input and output memory ordering. However it does not
do an inter-processor transpose (see test_transMPI for that).

test1D_cos_complex.
c

This program exemplifies the use of 1D transforms in P3DFFT++, using cosine 1D transform (DCT-1),
for complex-valued arrays. 1D transforms are performed on 3D arrays, in the dimension specified as
an argument. This could be an isolated 1D transform or a stage in a multidimensional transform. This
function can do local transposition, i.e. arbitrary input and output memory ordering. However it does not
do an inter-processor transpose (see test_transMPI for that).

test1D_r2c.
c

This program exemplifies the use of 1D transforms in P3DFFT++, using real-to-complex (R2C) 1D
transform. 1D transforms are performed on 3D arrays, in the dimension specified as an argument. This
could be an isolated 1D transform or a stage in a multidimensional transform. This function can do local
transposition, i.e. arbitrary input and output memory ordering. However it does not do an inter-processor
transpose (see test_transMPI for that).

test3D_c2c.
c

This program exemplifies using P3DFFT++ library for 3D complex-to-complex FFT.

test3D_c2c_inplace.
c

This program exemplifies using P3DFFT++ library for 3D complex-to-complex FFT, as an in-place trans-
form (output overwrites input, at the same array).

test3D_r2c.
c

This program exemplifies using P3DFFT++ library for 3D real-to-complex FFT.

test3D_r2c_memord.
c

This program exemplifies using P3DFFT++ library for 3D real-to-complex FFT.

test3D_r2c_single.
c

This program exemplifies using P3DFFT++ library for 3D real-to-complex FFT. This is a single precision
version of test3D_r2c.c example.

test_deriv.
c

This program exemplifies using P3DFFT++ library for taking a spectral derivative in a given dimension.

test2D+empty.
c

This program exemplifies using P3DFFT++ library for 2D Fourier Transform (real-to-complex) on a 3D
grid. this implies that one dimension is not transformed.
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7.7 P3DFFT++ Fortran examples

Makefile.
user.
Fortran

An example Makefile showing how P3DFFT++ should be linked with a user’s code

test1D_cos.
f90

This program exemplifies the use of 1D transforms in P3DFFT++, for a 1D cosine transform, for real-
valued arrays. 1D transforms are performed on 3D arrays, in the dimension specified as an argument.
This could be an isolated 1D transform or a stage in a multidimensional transform. This function can
do local transposition, i.e. arbitrary input and output memory ordering. However it does not do an
inter-processor transpose (see test_transMPI for that).

test1D_cos_complex.
f90

This program exemplifies the use of 1D transforms in P3DFFT++, for a 1D cosine transform, for
complex-valued arrays. 1D transforms are performed on 3D arrays, in the dimension specified as an
argument. This could be an isolated 1D transform or a stage in a multidimensional transform. This
function can do local transposition, i.e. arbitrary input and output memory ordering. However it does
not do an inter-processor transpose (see test_transMPI for that).

test1D_r2c.
f90

This program exemplifies the use of 1D transforms in P3DFFT++, for a 1D real-to-complex FFT. 1D
transforms are performed on 3D arrays, in the dimension specified as an argument. This could be an iso-
lated 1D transform or a stage in a multidimensional transform. This function can do local transposition,
i.e. arbitrary input and output memory ordering. However it does not do an inter-processor transpose
(see test_transMPI for that).

test3D_c2c.
f90

This sample program illustrates the use of P3DFFT++ library for highly scalable parallel 3D FFT, for a
3D complex FFT.

test3D_c2c_inplace.
f90

This sample program illustrates the use of P3DFFT++ library for highly scalable parallel 3D FFT, for a
3D complex FFT. This is an in-place version (output overwrites input at the same location).

test3D_r2c.
f90

This sample program illustrates the use of P3DFFT++ library for highly scalable parallel 3D FFT, for a
3D real-to-complex FFT.

test3D_r2c_single.
f90

This sample program illustrates the use of P3DFFT++ library for highly scalable parallel 3D FFT, for a
3D real-to-complex FFT. This is a single precision version of test3D_r2c.f90 example.

test_deriv.
f90

This program exemplifies using P3DFFT++ library for taking a spectral derivative of a 3D array in a
given dimension.
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of the 2021 Improving Scientific Software Conference (No. NCAR/TN567+PROC). 2021 August 12. DOI:
10.26024/p6mv-en77 PDF

59



P3DFFT++ Documentation, Release 3.0.0

60 Chapter 8. Selected publications and presentations



CHAPTER 9

Contact

You can reach the main author of P3DFFT Dmitry Pekurovsky at dmitry@sdsc.edu. Also be sure to subscribe to
the project mailing list where you can discuss topics of interest with other users and developers and get timely news
regarding this library.
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CHAPTER 10

License of use

Title P3DFFT++

Authors Dmitry Pekurovsky

Copyright (c) 2006-2019

The Regents of the University of California.

All Rights Reserved.

Permission to use, copy, modify and distribute any part of this software for educational, research and non-profit
purposes, by individuals or non-profit organizations, without fee, and without a written agreement is hereby granted,
provided that the above copyright notice, this paragraph and the following three paragraphs appear in all copies.

For-profit organizations desiring to use this software and others wishing to incorporate this software into commercial
products or use it for commercial purposes should contact the:

Office of Innovation & Commercialization

University of California San Diego

9500 Gilman Drive, La Jolla, California, 92093-0910

Phone: (858) 534-5815

E-mail: innovation@ucsd.edu

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDI-
RECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING
OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFOR-
NIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS. THE UNIVERSITY OF CALIFORNIA MAKES NO REPRESENTATIONS AND EXTENDS
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,
OR THAT THE USE OF THE MATERIAL WILL NOT INFRINGE ANY PATENT, TRADEMARK OR OTHER
RIGHTS.
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